LCOV - code coverage report
Current view: top level - Modules - audioop.c (source / functions) Hit Total Coverage
Test: CPython lcov report Lines: 619 694 89.2 %
Date: 2022-07-07 18:19:46 Functions: 40 40 100.0 %

          Line data    Source code
       1             : 
       2             : /* audioopmodule - Module to detect peak values in arrays */
       3             : 
       4             : #define PY_SSIZE_T_CLEAN
       5             : 
       6             : #include "Python.h"
       7             : 
       8             : static const int maxvals[] = {0, 0x7F, 0x7FFF, 0x7FFFFF, 0x7FFFFFFF};
       9             : /* -1 trick is needed on Windows to support -0x80000000 without a warning */
      10             : static const int minvals[] = {0, -0x80, -0x8000, -0x800000, -0x7FFFFFFF-1};
      11             : static const unsigned int masks[] = {0, 0xFF, 0xFFFF, 0xFFFFFF, 0xFFFFFFFF};
      12             : 
      13             : static int
      14         518 : fbound(double val, double minval, double maxval)
      15             : {
      16         518 :     if (val > maxval) {
      17          10 :         val = maxval;
      18             :     }
      19         508 :     else if (val < minval + 1.0) {
      20          59 :         val = minval;
      21             :     }
      22             : 
      23             :     /* Round towards minus infinity (-inf) */
      24         518 :     val = floor(val);
      25             : 
      26             :     /* Cast double to integer: round towards zero */
      27         518 :     return (int)val;
      28             : }
      29             : 
      30             : 
      31             : /* Code shamelessly stolen from sox, 12.17.7, g711.c
      32             : ** (c) Craig Reese, Joe Campbell and Jeff Poskanzer 1989 */
      33             : 
      34             : /* From g711.c:
      35             :  *
      36             :  * December 30, 1994:
      37             :  * Functions linear2alaw, linear2ulaw have been updated to correctly
      38             :  * convert unquantized 16 bit values.
      39             :  * Tables for direct u- to A-law and A- to u-law conversions have been
      40             :  * corrected.
      41             :  * Borge Lindberg, Center for PersonKommunikation, Aalborg University.
      42             :  * bli@cpk.auc.dk
      43             :  *
      44             :  */
      45             : #define BIAS 0x84   /* define the add-in bias for 16 bit samples */
      46             : #define CLIP 32635
      47             : #define SIGN_BIT        (0x80)          /* Sign bit for an A-law byte. */
      48             : #define QUANT_MASK      (0xf)           /* Quantization field mask. */
      49             : #define SEG_SHIFT       (4)             /* Left shift for segment number. */
      50             : #define SEG_MASK        (0x70)          /* Segment field mask. */
      51             : 
      52             : static const int16_t seg_aend[8] = {
      53             :     0x1F, 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF
      54             : };
      55             : static const int16_t seg_uend[8] = {
      56             :     0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF
      57             : };
      58             : 
      59             : static int16_t
      60       24723 : search(int16_t val, const int16_t *table, int size)
      61             : {
      62             :     int i;
      63             : 
      64      112307 :     for (i = 0; i < size; i++) {
      65      112298 :         if (val <= *table++)
      66       24714 :             return (i);
      67             :     }
      68           9 :     return (size);
      69             : }
      70             : #define st_ulaw2linear16(uc) (_st_ulaw2linear16[uc])
      71             : #define st_alaw2linear16(uc) (_st_alaw2linear16[uc])
      72             : 
      73             : static const int16_t _st_ulaw2linear16[256] = {
      74             :     -32124,  -31100,  -30076,  -29052,  -28028,  -27004,  -25980,
      75             :     -24956,  -23932,  -22908,  -21884,  -20860,  -19836,  -18812,
      76             :     -17788,  -16764,  -15996,  -15484,  -14972,  -14460,  -13948,
      77             :     -13436,  -12924,  -12412,  -11900,  -11388,  -10876,  -10364,
      78             :      -9852,   -9340,   -8828,   -8316,   -7932,   -7676,   -7420,
      79             :      -7164,   -6908,   -6652,   -6396,   -6140,   -5884,   -5628,
      80             :      -5372,   -5116,   -4860,   -4604,   -4348,   -4092,   -3900,
      81             :      -3772,   -3644,   -3516,   -3388,   -3260,   -3132,   -3004,
      82             :      -2876,   -2748,   -2620,   -2492,   -2364,   -2236,   -2108,
      83             :      -1980,   -1884,   -1820,   -1756,   -1692,   -1628,   -1564,
      84             :      -1500,   -1436,   -1372,   -1308,   -1244,   -1180,   -1116,
      85             :      -1052,    -988,    -924,    -876,    -844,    -812,    -780,
      86             :       -748,    -716,    -684,    -652,    -620,    -588,    -556,
      87             :       -524,    -492,    -460,    -428,    -396,    -372,    -356,
      88             :       -340,    -324,    -308,    -292,    -276,    -260,    -244,
      89             :       -228,    -212,    -196,    -180,    -164,    -148,    -132,
      90             :       -120,    -112,    -104,     -96,     -88,     -80,     -72,
      91             :        -64,     -56,     -48,     -40,     -32,     -24,     -16,
      92             :     -8,       0,   32124,   31100,   30076,   29052,   28028,
      93             :      27004,   25980,   24956,   23932,   22908,   21884,   20860,
      94             :      19836,   18812,   17788,   16764,   15996,   15484,   14972,
      95             :      14460,   13948,   13436,   12924,   12412,   11900,   11388,
      96             :      10876,   10364,    9852,    9340,    8828,    8316,    7932,
      97             :       7676,    7420,    7164,    6908,    6652,    6396,    6140,
      98             :       5884,    5628,    5372,    5116,    4860,    4604,    4348,
      99             :       4092,    3900,    3772,    3644,    3516,    3388,    3260,
     100             :       3132,    3004,    2876,    2748,    2620,    2492,    2364,
     101             :       2236,    2108,    1980,    1884,    1820,    1756,    1692,
     102             :       1628,    1564,    1500,    1436,    1372,    1308,    1244,
     103             :       1180,    1116,    1052,     988,     924,     876,     844,
     104             :        812,     780,     748,     716,     684,     652,     620,
     105             :        588,     556,     524,     492,     460,     428,     396,
     106             :        372,     356,     340,     324,     308,     292,     276,
     107             :        260,     244,     228,     212,     196,     180,     164,
     108             :        148,     132,     120,     112,     104,      96,      88,
     109             :     80,      72,      64,      56,      48,      40,      32,
     110             :     24,      16,       8,       0
     111             : };
     112             : 
     113             : /*
     114             :  * linear2ulaw() accepts a 14-bit signed integer and encodes it as u-law data
     115             :  * stored in an unsigned char.  This function should only be called with
     116             :  * the data shifted such that it only contains information in the lower
     117             :  * 14-bits.
     118             :  *
     119             :  * In order to simplify the encoding process, the original linear magnitude
     120             :  * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
     121             :  * (33 - 8191). The result can be seen in the following encoding table:
     122             :  *
     123             :  *      Biased Linear Input Code        Compressed Code
     124             :  *      ------------------------        ---------------
     125             :  *      00000001wxyza                   000wxyz
     126             :  *      0000001wxyzab                   001wxyz
     127             :  *      000001wxyzabc                   010wxyz
     128             :  *      00001wxyzabcd                   011wxyz
     129             :  *      0001wxyzabcde                   100wxyz
     130             :  *      001wxyzabcdef                   101wxyz
     131             :  *      01wxyzabcdefg                   110wxyz
     132             :  *      1wxyzabcdefgh                   111wxyz
     133             :  *
     134             :  * Each biased linear code has a leading 1 which identifies the segment
     135             :  * number. The value of the segment number is equal to 7 minus the number
     136             :  * of leading 0's. The quantization interval is directly available as the
     137             :  * four bits wxyz.  * The trailing bits (a - h) are ignored.
     138             :  *
     139             :  * Ordinarily the complement of the resulting code word is used for
     140             :  * transmission, and so the code word is complemented before it is returned.
     141             :  *
     142             :  * For further information see John C. Bellamy's Digital Telephony, 1982,
     143             :  * John Wiley & Sons, pps 98-111 and 472-476.
     144             :  */
     145             : static unsigned char
     146       16243 : st_14linear2ulaw(int16_t pcm_val)       /* 2's complement (14-bit range) */
     147             : {
     148             :     int16_t         mask;
     149             :     int16_t         seg;
     150             :     unsigned char   uval;
     151             : 
     152             :     /* u-law inverts all bits */
     153             :     /* Get the sign and the magnitude of the value. */
     154       16243 :     if (pcm_val < 0) {
     155        7545 :         pcm_val = -pcm_val;
     156        7545 :         mask = 0x7F;
     157             :     } else {
     158        8698 :         mask = 0xFF;
     159             :     }
     160       16243 :     if ( pcm_val > CLIP ) pcm_val = CLIP;           /* clip the magnitude */
     161       16243 :     pcm_val += (BIAS >> 2);
     162             : 
     163             :     /* Convert the scaled magnitude to segment number. */
     164       16243 :     seg = search(pcm_val, seg_uend, 8);
     165             : 
     166             :     /*
     167             :      * Combine the sign, segment, quantization bits;
     168             :      * and complement the code word.
     169             :      */
     170       16243 :     if (seg >= 8)           /* out of range, return maximum value. */
     171           9 :         return (unsigned char) (0x7F ^ mask);
     172             :     else {
     173       16234 :         uval = (unsigned char) (seg << 4) | ((pcm_val >> (seg + 1)) & 0xF);
     174       16234 :         return (uval ^ mask);
     175             :     }
     176             : 
     177             : }
     178             : 
     179             : static const int16_t _st_alaw2linear16[256] = {
     180             :      -5504,   -5248,   -6016,   -5760,   -4480,   -4224,   -4992,
     181             :      -4736,   -7552,   -7296,   -8064,   -7808,   -6528,   -6272,
     182             :      -7040,   -6784,   -2752,   -2624,   -3008,   -2880,   -2240,
     183             :      -2112,   -2496,   -2368,   -3776,   -3648,   -4032,   -3904,
     184             :      -3264,   -3136,   -3520,   -3392,  -22016,  -20992,  -24064,
     185             :     -23040,  -17920,  -16896,  -19968,  -18944,  -30208,  -29184,
     186             :     -32256,  -31232,  -26112,  -25088,  -28160,  -27136,  -11008,
     187             :     -10496,  -12032,  -11520,   -8960,   -8448,   -9984,   -9472,
     188             :     -15104,  -14592,  -16128,  -15616,  -13056,  -12544,  -14080,
     189             :     -13568,    -344,    -328,    -376,    -360,    -280,    -264,
     190             :       -312,    -296,    -472,    -456,    -504,    -488,    -408,
     191             :       -392,    -440,    -424,     -88,     -72,    -120,    -104,
     192             :        -24,      -8,     -56,     -40,    -216,    -200,    -248,
     193             :       -232,    -152,    -136,    -184,    -168,   -1376,   -1312,
     194             :      -1504,   -1440,   -1120,   -1056,   -1248,   -1184,   -1888,
     195             :      -1824,   -2016,   -1952,   -1632,   -1568,   -1760,   -1696,
     196             :       -688,    -656,    -752,    -720,    -560,    -528,    -624,
     197             :       -592,    -944,    -912,   -1008,    -976,    -816,    -784,
     198             :       -880,    -848,    5504,    5248,    6016,    5760,    4480,
     199             :       4224,    4992,    4736,    7552,    7296,    8064,    7808,
     200             :       6528,    6272,    7040,    6784,    2752,    2624,    3008,
     201             :       2880,    2240,    2112,    2496,    2368,    3776,    3648,
     202             :       4032,    3904,    3264,    3136,    3520,    3392,   22016,
     203             :      20992,   24064,   23040,   17920,   16896,   19968,   18944,
     204             :      30208,   29184,   32256,   31232,   26112,   25088,   28160,
     205             :      27136,   11008,   10496,   12032,   11520,    8960,    8448,
     206             :       9984,    9472,   15104,   14592,   16128,   15616,   13056,
     207             :      12544,   14080,   13568,     344,     328,     376,     360,
     208             :        280,     264,     312,     296,     472,     456,     504,
     209             :        488,     408,     392,     440,     424,      88,      72,
     210             :        120,     104,      24,       8,      56,      40,     216,
     211             :        200,     248,     232,     152,     136,     184,     168,
     212             :       1376,    1312,    1504,    1440,    1120,    1056,    1248,
     213             :       1184,    1888,    1824,    2016,    1952,    1632,    1568,
     214             :       1760,    1696,     688,     656,     752,     720,     560,
     215             :        528,     624,     592,     944,     912,    1008,     976,
     216             :        816,     784,     880,     848
     217             : };
     218             : 
     219             : /*
     220             :  * linear2alaw() accepts a 13-bit signed integer and encodes it as A-law data
     221             :  * stored in an unsigned char.  This function should only be called with
     222             :  * the data shifted such that it only contains information in the lower
     223             :  * 13-bits.
     224             :  *
     225             :  *              Linear Input Code       Compressed Code
     226             :  *      ------------------------        ---------------
     227             :  *      0000000wxyza                    000wxyz
     228             :  *      0000001wxyza                    001wxyz
     229             :  *      000001wxyzab                    010wxyz
     230             :  *      00001wxyzabc                    011wxyz
     231             :  *      0001wxyzabcd                    100wxyz
     232             :  *      001wxyzabcde                    101wxyz
     233             :  *      01wxyzabcdef                    110wxyz
     234             :  *      1wxyzabcdefg                    111wxyz
     235             :  *
     236             :  * For further information see John C. Bellamy's Digital Telephony, 1982,
     237             :  * John Wiley & Sons, pps 98-111 and 472-476.
     238             :  */
     239             : static unsigned char
     240        8480 : st_linear2alaw(int16_t pcm_val) /* 2's complement (13-bit range) */
     241             : {
     242             :     int16_t         mask;
     243             :     int16_t         seg;
     244             :     unsigned char   aval;
     245             : 
     246             :     /* A-law using even bit inversion */
     247        8480 :     if (pcm_val >= 0) {
     248        4523 :         mask = 0xD5;            /* sign (7th) bit = 1 */
     249             :     } else {
     250        3957 :         mask = 0x55;            /* sign bit = 0 */
     251        3957 :         pcm_val = -pcm_val - 1;
     252             :     }
     253             : 
     254             :     /* Convert the scaled magnitude to segment number. */
     255        8480 :     seg = search(pcm_val, seg_aend, 8);
     256             : 
     257             :     /* Combine the sign, segment, and quantization bits. */
     258             : 
     259        8480 :     if (seg >= 8)           /* out of range, return maximum value. */
     260           0 :         return (unsigned char) (0x7F ^ mask);
     261             :     else {
     262        8480 :         aval = (unsigned char) seg << SEG_SHIFT;
     263        8480 :         if (seg < 2)
     264        1370 :             aval |= (pcm_val >> 1) & QUANT_MASK;
     265             :         else
     266        7110 :             aval |= (pcm_val >> seg) & QUANT_MASK;
     267        8480 :         return (aval ^ mask);
     268             :     }
     269             : }
     270             : /* End of code taken from sox */
     271             : 
     272             : /* Intel ADPCM step variation table */
     273             : static const int indexTable[16] = {
     274             :     -1, -1, -1, -1, 2, 4, 6, 8,
     275             :     -1, -1, -1, -1, 2, 4, 6, 8,
     276             : };
     277             : 
     278             : static const int stepsizeTable[89] = {
     279             :     7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
     280             :     19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
     281             :     50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
     282             :     130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
     283             :     337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
     284             :     876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
     285             :     2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
     286             :     5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
     287             :     15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
     288             : };
     289             : 
     290             : #define GETINTX(T, cp, i)  (*(T *)((unsigned char *)(cp) + (i)))
     291             : #define SETINTX(T, cp, i, val)  do {                    \
     292             :         *(T *)((unsigned char *)(cp) + (i)) = (T)(val); \
     293             :     } while (0)
     294             : 
     295             : 
     296             : #define GETINT8(cp, i)          GETINTX(signed char, (cp), (i))
     297             : #define GETINT16(cp, i)         GETINTX(int16_t, (cp), (i))
     298             : #define GETINT32(cp, i)         GETINTX(int32_t, (cp), (i))
     299             : 
     300             : #ifdef WORDS_BIGENDIAN
     301             : #define GETINT24(cp, i)  (                              \
     302             :         ((unsigned char *)(cp) + (i))[2] +              \
     303             :         (((unsigned char *)(cp) + (i))[1] << 8) +       \
     304             :         (((signed char *)(cp) + (i))[0] << 16) )
     305             : #else
     306             : #define GETINT24(cp, i)  (                              \
     307             :         ((unsigned char *)(cp) + (i))[0] +              \
     308             :         (((unsigned char *)(cp) + (i))[1] << 8) +       \
     309             :         (((signed char *)(cp) + (i))[2] << 16) )
     310             : #endif
     311             : 
     312             : 
     313             : #define SETINT8(cp, i, val)     SETINTX(signed char, (cp), (i), (val))
     314             : #define SETINT16(cp, i, val)    SETINTX(int16_t, (cp), (i), (val))
     315             : #define SETINT32(cp, i, val)    SETINTX(int32_t, (cp), (i), (val))
     316             : 
     317             : #ifdef WORDS_BIGENDIAN
     318             : #define SETINT24(cp, i, val)  do {                              \
     319             :         ((unsigned char *)(cp) + (i))[2] = (int)(val);          \
     320             :         ((unsigned char *)(cp) + (i))[1] = (int)(val) >> 8;     \
     321             :         ((signed char *)(cp) + (i))[0] = (int)(val) >> 16;      \
     322             :     } while (0)
     323             : #else
     324             : #define SETINT24(cp, i, val)  do {                              \
     325             :         ((unsigned char *)(cp) + (i))[0] = (int)(val);          \
     326             :         ((unsigned char *)(cp) + (i))[1] = (int)(val) >> 8;     \
     327             :         ((signed char *)(cp) + (i))[2] = (int)(val) >> 16;      \
     328             :     } while (0)
     329             : #endif
     330             : 
     331             : 
     332             : #define GETRAWSAMPLE(size, cp, i)  (                    \
     333             :         (size == 1) ? (int)GETINT8((cp), (i)) :         \
     334             :         (size == 2) ? (int)GETINT16((cp), (i)) :        \
     335             :         (size == 3) ? (int)GETINT24((cp), (i)) :        \
     336             :                       (int)GETINT32((cp), (i)))
     337             : 
     338             : #define SETRAWSAMPLE(size, cp, i, val)  do {    \
     339             :         if (size == 1)                          \
     340             :             SETINT8((cp), (i), (val));          \
     341             :         else if (size == 2)                     \
     342             :             SETINT16((cp), (i), (val));         \
     343             :         else if (size == 3)                     \
     344             :             SETINT24((cp), (i), (val));         \
     345             :         else                                    \
     346             :             SETINT32((cp), (i), (val));         \
     347             :     } while(0)
     348             : 
     349             : 
     350             : #define GETSAMPLE32(size, cp, i)  (                     \
     351             :         (size == 1) ? (int)GETINT8((cp), (i)) << 24 :   \
     352             :         (size == 2) ? (int)GETINT16((cp), (i)) << 16 :  \
     353             :         (size == 3) ? (int)GETINT24((cp), (i)) << 8 :   \
     354             :                       (int)GETINT32((cp), (i)))
     355             : 
     356             : #define SETSAMPLE32(size, cp, i, val)  do {     \
     357             :         if (size == 1)                          \
     358             :             SETINT8((cp), (i), (val) >> 24);    \
     359             :         else if (size == 2)                     \
     360             :             SETINT16((cp), (i), (val) >> 16);   \
     361             :         else if (size == 3)                     \
     362             :             SETINT24((cp), (i), (val) >> 8);    \
     363             :         else                                    \
     364             :             SETINT32((cp), (i), (val));         \
     365             :     } while(0)
     366             : 
     367             : static PyModuleDef audioopmodule;
     368             : 
     369             : typedef struct {
     370             :     PyObject *AudioopError;
     371             : } audioop_state;
     372             : 
     373             : static inline audioop_state *
     374         183 : get_audioop_state(PyObject *module)
     375             : {
     376         183 :     void *state = PyModule_GetState(module);
     377         183 :     assert(state != NULL);
     378         183 :     return (audioop_state *)state;
     379             : }
     380             : 
     381             : static int
     382        1322 : audioop_check_size(PyObject *module, int size)
     383             : {
     384        1322 :     if (size < 1 || size > 4) {
     385          31 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
     386             :                         "Size should be 1, 2, 3 or 4");
     387          31 :         return 0;
     388             :     }
     389             :     else
     390        1291 :         return 1;
     391             : }
     392             : 
     393             : static int
     394         866 : audioop_check_parameters(PyObject *module, Py_ssize_t len, int size)
     395             : {
     396         866 :     if (!audioop_check_size(module, size))
     397          18 :         return 0;
     398         848 :     if (len % size != 0) {
     399          54 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
     400             :                         "not a whole number of frames");
     401          54 :         return 0;
     402             :     }
     403         794 :     return 1;
     404             : }
     405             : 
     406             : /*[clinic input]
     407             : module audioop
     408             : [clinic start generated code]*/
     409             : /*[clinic end generated code: output=da39a3ee5e6b4b0d input=8fa8f6611be3591a]*/
     410             : 
     411             : /*[clinic input]
     412             : audioop.getsample
     413             : 
     414             :     fragment: Py_buffer
     415             :     width: int
     416             :     index: Py_ssize_t
     417             :     /
     418             : 
     419             : Return the value of sample index from the fragment.
     420             : [clinic start generated code]*/
     421             : 
     422             : static PyObject *
     423          32 : audioop_getsample_impl(PyObject *module, Py_buffer *fragment, int width,
     424             :                        Py_ssize_t index)
     425             : /*[clinic end generated code: output=8fe1b1775134f39a input=88edbe2871393549]*/
     426             : {
     427             :     int val;
     428             : 
     429          32 :     if (!audioop_check_parameters(module, fragment->len, width))
     430           4 :         return NULL;
     431          28 :     if (index < 0 || index >= fragment->len/width) {
     432           0 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
     433             :                         "Index out of range");
     434           0 :         return NULL;
     435             :     }
     436          28 :     val = GETRAWSAMPLE(width, fragment->buf, index*width);
     437          28 :     return PyLong_FromLong(val);
     438             : }
     439             : 
     440             : /*[clinic input]
     441             : audioop.max
     442             : 
     443             :     fragment: Py_buffer
     444             :     width: int
     445             :     /
     446             : 
     447             : Return the maximum of the absolute value of all samples in a fragment.
     448             : [clinic start generated code]*/
     449             : 
     450             : static PyObject *
     451          36 : audioop_max_impl(PyObject *module, Py_buffer *fragment, int width)
     452             : /*[clinic end generated code: output=e6c5952714f1c3f0 input=32bea5ea0ac8c223]*/
     453             : {
     454             :     Py_ssize_t i;
     455          36 :     unsigned int absval, max = 0;
     456             : 
     457          36 :     if (!audioop_check_parameters(module, fragment->len, width))
     458           4 :         return NULL;
     459          84 :     for (i = 0; i < fragment->len; i += width) {
     460          52 :         int val = GETRAWSAMPLE(width, fragment->buf, i);
     461             :         /* Cast to unsigned before negating. Unsigned overflow is well-
     462             :         defined, but signed overflow is not. */
     463          52 :         if (val < 0) absval = (unsigned int)-(int64_t)val;
     464          28 :         else absval = val;
     465          52 :         if (absval > max) max = absval;
     466             :     }
     467          32 :     return PyLong_FromUnsignedLong(max);
     468             : }
     469             : 
     470             : /*[clinic input]
     471             : audioop.minmax
     472             : 
     473             :     fragment: Py_buffer
     474             :     width: int
     475             :     /
     476             : 
     477             : Return the minimum and maximum values of all samples in the sound fragment.
     478             : [clinic start generated code]*/
     479             : 
     480             : static PyObject *
     481          36 : audioop_minmax_impl(PyObject *module, Py_buffer *fragment, int width)
     482             : /*[clinic end generated code: output=473fda66b15c836e input=89848e9b927a0696]*/
     483             : {
     484             :     Py_ssize_t i;
     485             :     /* -1 trick below is needed on Windows to support -0x80000000 without
     486             :     a warning */
     487          36 :     int min = 0x7fffffff, max = -0x7FFFFFFF-1;
     488             : 
     489          36 :     if (!audioop_check_parameters(module, fragment->len, width))
     490           4 :         return NULL;
     491          84 :     for (i = 0; i < fragment->len; i += width) {
     492          52 :         int val = GETRAWSAMPLE(width, fragment->buf, i);
     493          52 :         if (val > max) max = val;
     494          52 :         if (val < min) min = val;
     495             :     }
     496          32 :     return Py_BuildValue("(ii)", min, max);
     497             : }
     498             : 
     499             : /*[clinic input]
     500             : audioop.avg
     501             : 
     502             :     fragment: Py_buffer
     503             :     width: int
     504             :     /
     505             : 
     506             : Return the average over all samples in the fragment.
     507             : [clinic start generated code]*/
     508             : 
     509             : static PyObject *
     510          38 : audioop_avg_impl(PyObject *module, Py_buffer *fragment, int width)
     511             : /*[clinic end generated code: output=4410a4c12c3586e6 input=1114493c7611334d]*/
     512             : {
     513             :     Py_ssize_t i;
     514             :     int avg;
     515          38 :     double sum = 0.0;
     516             : 
     517          38 :     if (!audioop_check_parameters(module, fragment->len, width))
     518           4 :         return NULL;
     519          74 :     for (i = 0; i < fragment->len; i += width)
     520          40 :         sum += GETRAWSAMPLE(width, fragment->buf, i);
     521          34 :     if (fragment->len == 0)
     522          12 :         avg = 0;
     523             :     else
     524          22 :         avg = (int)floor(sum / (double)(fragment->len/width));
     525          34 :     return PyLong_FromLong(avg);
     526             : }
     527             : 
     528             : /*[clinic input]
     529             : audioop.rms
     530             : 
     531             :     fragment: Py_buffer
     532             :     width: int
     533             :     /
     534             : 
     535             : Return the root-mean-square of the fragment, i.e. sqrt(sum(S_i^2)/n).
     536             : [clinic start generated code]*/
     537             : 
     538             : static PyObject *
     539          32 : audioop_rms_impl(PyObject *module, Py_buffer *fragment, int width)
     540             : /*[clinic end generated code: output=1e7871c826445698 input=4cc57c6c94219d78]*/
     541             : {
     542             :     Py_ssize_t i;
     543             :     unsigned int res;
     544          32 :     double sum_squares = 0.0;
     545             : 
     546          32 :     if (!audioop_check_parameters(module, fragment->len, width))
     547           4 :         return NULL;
     548         496 :     for (i = 0; i < fragment->len; i += width) {
     549         468 :         double val = GETRAWSAMPLE(width, fragment->buf, i);
     550         468 :         sum_squares += val*val;
     551             :     }
     552          28 :     if (fragment->len == 0)
     553          12 :         res = 0;
     554             :     else
     555          16 :         res = (unsigned int)sqrt(sum_squares / (double)(fragment->len/width));
     556          28 :     return PyLong_FromUnsignedLong(res);
     557             : }
     558             : 
     559          65 : static double _sum2(const int16_t *a, const int16_t *b, Py_ssize_t len)
     560             : {
     561             :     Py_ssize_t i;
     562          65 :     double sum = 0.0;
     563             : 
     564         470 :     for( i=0; i<len; i++) {
     565         405 :         sum = sum + (double)a[i]*(double)b[i];
     566             :     }
     567          65 :     return sum;
     568             : }
     569             : 
     570             : /*
     571             : ** Findfit tries to locate a sample within another sample. Its main use
     572             : ** is in echo-cancellation (to find the feedback of the output signal in
     573             : ** the input signal).
     574             : ** The method used is as follows:
     575             : **
     576             : ** let R be the reference signal (length n) and A the input signal (length N)
     577             : ** with N > n, and let all sums be over i from 0 to n-1.
     578             : **
     579             : ** Now, for each j in {0..N-n} we compute a factor fj so that -fj*R matches A
     580             : ** as good as possible, i.e. sum( (A[j+i]+fj*R[i])^2 ) is minimal. This
     581             : ** equation gives fj = sum( A[j+i]R[i] ) / sum(R[i]^2).
     582             : **
     583             : ** Next, we compute the relative distance between the original signal and
     584             : ** the modified signal and minimize that over j:
     585             : ** vj = sum( (A[j+i]-fj*R[i])^2 ) / sum( A[j+i]^2 )  =>
     586             : ** vj = ( sum(A[j+i]^2)*sum(R[i]^2) - sum(A[j+i]R[i])^2 ) / sum( A[j+i]^2 )
     587             : **
     588             : ** In the code variables correspond as follows:
     589             : ** cp1          A
     590             : ** cp2          R
     591             : ** len1         N
     592             : ** len2         n
     593             : ** aj_m1        A[j-1]
     594             : ** aj_lm1       A[j+n-1]
     595             : ** sum_ri_2     sum(R[i]^2)
     596             : ** sum_aij_2    sum(A[i+j]^2)
     597             : ** sum_aij_ri   sum(A[i+j]R[i])
     598             : **
     599             : ** sum_ri is calculated once, sum_aij_2 is updated each step and sum_aij_ri
     600             : ** is completely recalculated each step.
     601             : */
     602             : /*[clinic input]
     603             : audioop.findfit
     604             : 
     605             :     fragment: Py_buffer
     606             :     reference: Py_buffer
     607             :     /
     608             : 
     609             : Try to match reference as well as possible to a portion of fragment.
     610             : [clinic start generated code]*/
     611             : 
     612             : static PyObject *
     613           5 : audioop_findfit_impl(PyObject *module, Py_buffer *fragment,
     614             :                      Py_buffer *reference)
     615             : /*[clinic end generated code: output=5752306d83cbbada input=62c305605e183c9a]*/
     616             : {
     617             :     const int16_t *cp1, *cp2;
     618             :     Py_ssize_t len1, len2;
     619             :     Py_ssize_t j, best_j;
     620             :     double aj_m1, aj_lm1;
     621             :     double sum_ri_2, sum_aij_2, sum_aij_ri, result, best_result, factor;
     622             : 
     623           5 :     if (fragment->len & 1 || reference->len & 1) {
     624           0 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
     625             :                         "Strings should be even-sized");
     626           0 :         return NULL;
     627             :     }
     628           5 :     cp1 = (const int16_t *)fragment->buf;
     629           5 :     len1 = fragment->len >> 1;
     630           5 :     cp2 = (const int16_t *)reference->buf;
     631           5 :     len2 = reference->len >> 1;
     632             : 
     633           5 :     if (len1 < len2) {
     634           0 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
     635             :                         "First sample should be longer");
     636           0 :         return NULL;
     637             :     }
     638           5 :     sum_ri_2 = _sum2(cp2, cp2, len2);
     639           5 :     sum_aij_2 = _sum2(cp1, cp1, len2);
     640           5 :     sum_aij_ri = _sum2(cp1, cp2, len2);
     641             : 
     642           5 :     result = (sum_ri_2*sum_aij_2 - sum_aij_ri*sum_aij_ri) / sum_aij_2;
     643             : 
     644           5 :     best_result = result;
     645           5 :     best_j = 0;
     646             : 
     647          39 :     for ( j=1; j<=len1-len2; j++) {
     648          34 :         aj_m1 = (double)cp1[j-1];
     649          34 :         aj_lm1 = (double)cp1[j+len2-1];
     650             : 
     651          34 :         sum_aij_2 = sum_aij_2 + aj_lm1*aj_lm1 - aj_m1*aj_m1;
     652          34 :         sum_aij_ri = _sum2(cp1+j, cp2, len2);
     653             : 
     654          34 :         result = (sum_ri_2*sum_aij_2 - sum_aij_ri*sum_aij_ri)
     655             :             / sum_aij_2;
     656             : 
     657          34 :         if ( result < best_result ) {
     658           2 :             best_result = result;
     659           2 :             best_j = j;
     660             :         }
     661             : 
     662             :     }
     663             : 
     664           5 :     factor = _sum2(cp1+best_j, cp2, len2) / sum_ri_2;
     665             : 
     666           5 :     return Py_BuildValue("(nf)", best_j, factor);
     667             : }
     668             : 
     669             : /*
     670             : ** findfactor finds a factor f so that the energy in A-fB is minimal.
     671             : ** See the comment for findfit for details.
     672             : */
     673             : /*[clinic input]
     674             : audioop.findfactor
     675             : 
     676             :     fragment: Py_buffer
     677             :     reference: Py_buffer
     678             :     /
     679             : 
     680             : Return a factor F such that rms(add(fragment, mul(reference, -F))) is minimal.
     681             : [clinic start generated code]*/
     682             : 
     683             : static PyObject *
     684           4 : audioop_findfactor_impl(PyObject *module, Py_buffer *fragment,
     685             :                         Py_buffer *reference)
     686             : /*[clinic end generated code: output=14ea95652c1afcf8 input=816680301d012b21]*/
     687             : {
     688             :     const int16_t *cp1, *cp2;
     689             :     Py_ssize_t len;
     690             :     double sum_ri_2, sum_aij_ri, result;
     691             : 
     692           4 :     if (fragment->len & 1 || reference->len & 1) {
     693           0 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
     694             :                         "Strings should be even-sized");
     695           0 :         return NULL;
     696             :     }
     697           4 :     if (fragment->len != reference->len) {
     698           0 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
     699             :                         "Samples should be same size");
     700           0 :         return NULL;
     701             :     }
     702           4 :     cp1 = (const int16_t *)fragment->buf;
     703           4 :     cp2 = (const int16_t *)reference->buf;
     704           4 :     len = fragment->len >> 1;
     705           4 :     sum_ri_2 = _sum2(cp2, cp2, len);
     706           4 :     sum_aij_ri = _sum2(cp1, cp2, len);
     707             : 
     708           4 :     result = sum_aij_ri / sum_ri_2;
     709             : 
     710           4 :     return PyFloat_FromDouble(result);
     711             : }
     712             : 
     713             : /*
     714             : ** findmax returns the index of the n-sized segment of the input sample
     715             : ** that contains the most energy.
     716             : */
     717             : /*[clinic input]
     718             : audioop.findmax
     719             : 
     720             :     fragment: Py_buffer
     721             :     length: Py_ssize_t
     722             :     /
     723             : 
     724             : Search fragment for a slice of specified number of samples with maximum energy.
     725             : [clinic start generated code]*/
     726             : 
     727             : static PyObject *
     728           4 : audioop_findmax_impl(PyObject *module, Py_buffer *fragment,
     729             :                      Py_ssize_t length)
     730             : /*[clinic end generated code: output=f008128233523040 input=2f304801ed42383c]*/
     731             : {
     732             :     const int16_t *cp1;
     733             :     Py_ssize_t len1;
     734             :     Py_ssize_t j, best_j;
     735             :     double aj_m1, aj_lm1;
     736             :     double result, best_result;
     737             : 
     738           4 :     if (fragment->len & 1) {
     739           0 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
     740             :                         "Strings should be even-sized");
     741           0 :         return NULL;
     742             :     }
     743           4 :     cp1 = (const int16_t *)fragment->buf;
     744           4 :     len1 = fragment->len >> 1;
     745             : 
     746           4 :     if (length < 0 || len1 < length) {
     747           1 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
     748             :                         "Input sample should be longer");
     749           1 :         return NULL;
     750             :     }
     751             : 
     752           3 :     result = _sum2(cp1, cp1, length);
     753             : 
     754           3 :     best_result = result;
     755           3 :     best_j = 0;
     756             : 
     757          21 :     for ( j=1; j<=len1-length; j++) {
     758          18 :         aj_m1 = (double)cp1[j-1];
     759          18 :         aj_lm1 = (double)cp1[j+length-1];
     760             : 
     761          18 :         result = result + aj_lm1*aj_lm1 - aj_m1*aj_m1;
     762             : 
     763          18 :         if ( result > best_result ) {
     764          12 :             best_result = result;
     765          12 :             best_j = j;
     766             :         }
     767             : 
     768             :     }
     769             : 
     770           3 :     return PyLong_FromSsize_t(best_j);
     771             : }
     772             : 
     773             : /*[clinic input]
     774             : audioop.avgpp
     775             : 
     776             :     fragment: Py_buffer
     777             :     width: int
     778             :     /
     779             : 
     780             : Return the average peak-peak value over all samples in the fragment.
     781             : [clinic start generated code]*/
     782             : 
     783             : static PyObject *
     784          28 : audioop_avgpp_impl(PyObject *module, Py_buffer *fragment, int width)
     785             : /*[clinic end generated code: output=269596b0d5ae0b2b input=0b3cceeae420a7d9]*/
     786             : {
     787             :     Py_ssize_t i;
     788          28 :     int prevval, prevextremevalid = 0, prevextreme = 0;
     789          28 :     double sum = 0.0;
     790             :     unsigned int avg;
     791          28 :     int diff, prevdiff, nextreme = 0;
     792             : 
     793          28 :     if (!audioop_check_parameters(module, fragment->len, width))
     794           4 :         return NULL;
     795          24 :     if (fragment->len <= width)
     796          12 :         return PyLong_FromLong(0);
     797          12 :     prevval = GETRAWSAMPLE(width, fragment->buf, 0);
     798          12 :     prevdiff = 17; /* Anything != 0, 1 */
     799         452 :     for (i = width; i < fragment->len; i += width) {
     800         440 :         int val = GETRAWSAMPLE(width, fragment->buf, i);
     801         440 :         if (val != prevval) {
     802         436 :             diff = val < prevval;
     803         436 :             if (prevdiff == !diff) {
     804             :                 /* Derivative changed sign. Compute difference to last
     805             :                 ** extreme value and remember.
     806             :                 */
     807          24 :                 if (prevextremevalid) {
     808          16 :                     if (prevval < prevextreme)
     809          12 :                         sum += (double)((unsigned int)prevextreme -
     810          12 :                                         (unsigned int)prevval);
     811             :                     else
     812           4 :                         sum += (double)((unsigned int)prevval -
     813           4 :                                         (unsigned int)prevextreme);
     814          16 :                     nextreme++;
     815             :                 }
     816          24 :                 prevextremevalid = 1;
     817          24 :                 prevextreme = prevval;
     818             :             }
     819         436 :             prevval = val;
     820         436 :             prevdiff = diff;
     821             :         }
     822             :     }
     823          12 :     if ( nextreme == 0 )
     824           4 :         avg = 0;
     825             :     else
     826           8 :         avg = (unsigned int)(sum / (double)nextreme);
     827          12 :     return PyLong_FromUnsignedLong(avg);
     828             : }
     829             : 
     830             : /*[clinic input]
     831             : audioop.maxpp
     832             : 
     833             :     fragment: Py_buffer
     834             :     width: int
     835             :     /
     836             : 
     837             : Return the maximum peak-peak value in the sound fragment.
     838             : [clinic start generated code]*/
     839             : 
     840             : static PyObject *
     841          28 : audioop_maxpp_impl(PyObject *module, Py_buffer *fragment, int width)
     842             : /*[clinic end generated code: output=5b918ed5dbbdb978 input=671a13e1518f80a1]*/
     843             : {
     844             :     Py_ssize_t i;
     845          28 :     int prevval, prevextremevalid = 0, prevextreme = 0;
     846          28 :     unsigned int max = 0, extremediff;
     847             :     int diff, prevdiff;
     848             : 
     849          28 :     if (!audioop_check_parameters(module, fragment->len, width))
     850           4 :         return NULL;
     851          24 :     if (fragment->len <= width)
     852          12 :         return PyLong_FromLong(0);
     853          12 :     prevval = GETRAWSAMPLE(width, fragment->buf, 0);
     854          12 :     prevdiff = 17; /* Anything != 0, 1 */
     855         452 :     for (i = width; i < fragment->len; i += width) {
     856         440 :         int val = GETRAWSAMPLE(width, fragment->buf, i);
     857         440 :         if (val != prevval) {
     858         436 :             diff = val < prevval;
     859         436 :             if (prevdiff == !diff) {
     860             :                 /* Derivative changed sign. Compute difference to
     861             :                 ** last extreme value and remember.
     862             :                 */
     863          24 :                 if (prevextremevalid) {
     864          16 :                     if (prevval < prevextreme)
     865          12 :                         extremediff = (unsigned int)prevextreme -
     866          12 :                                       (unsigned int)prevval;
     867             :                     else
     868           4 :                         extremediff = (unsigned int)prevval -
     869           4 :                                       (unsigned int)prevextreme;
     870          16 :                     if ( extremediff > max )
     871          16 :                         max = extremediff;
     872             :                 }
     873          24 :                 prevextremevalid = 1;
     874          24 :                 prevextreme = prevval;
     875             :             }
     876         436 :             prevval = val;
     877         436 :             prevdiff = diff;
     878             :         }
     879             :     }
     880          12 :     return PyLong_FromUnsignedLong(max);
     881             : }
     882             : 
     883             : /*[clinic input]
     884             : audioop.cross
     885             : 
     886             :     fragment: Py_buffer
     887             :     width: int
     888             :     /
     889             : 
     890             : Return the number of zero crossings in the fragment passed as an argument.
     891             : [clinic start generated code]*/
     892             : 
     893             : static PyObject *
     894          36 : audioop_cross_impl(PyObject *module, Py_buffer *fragment, int width)
     895             : /*[clinic end generated code: output=5938dcdd74a1f431 input=b1b3f15b83f6b41a]*/
     896             : {
     897             :     Py_ssize_t i;
     898             :     int prevval;
     899             :     Py_ssize_t ncross;
     900             : 
     901          36 :     if (!audioop_check_parameters(module, fragment->len, width))
     902           4 :         return NULL;
     903          32 :     ncross = -1;
     904          32 :     prevval = 17; /* Anything <> 0,1 */
     905          92 :     for (i = 0; i < fragment->len; i += width) {
     906          60 :         int val = GETRAWSAMPLE(width, fragment->buf, i) < 0;
     907          60 :         if (val != prevval) ncross++;
     908          60 :         prevval = val;
     909             :     }
     910          32 :     return PyLong_FromSsize_t(ncross);
     911             : }
     912             : 
     913             : /*[clinic input]
     914             : audioop.mul
     915             : 
     916             :     fragment: Py_buffer
     917             :     width: int
     918             :     factor: double
     919             :     /
     920             : 
     921             : Return a fragment that has all samples in the original fragment multiplied by the floating-point value factor.
     922             : [clinic start generated code]*/
     923             : 
     924             : static PyObject *
     925          28 : audioop_mul_impl(PyObject *module, Py_buffer *fragment, int width,
     926             :                  double factor)
     927             : /*[clinic end generated code: output=6cd48fe796da0ea4 input=c726667baa157d3c]*/
     928             : {
     929             :     signed char *ncp;
     930             :     Py_ssize_t i;
     931             :     double maxval, minval;
     932             :     PyObject *rv;
     933             : 
     934          28 :     if (!audioop_check_parameters(module, fragment->len, width))
     935           4 :         return NULL;
     936             : 
     937          24 :     maxval = (double) maxvals[width];
     938          24 :     minval = (double) minvals[width];
     939             : 
     940          24 :     rv = PyBytes_FromStringAndSize(NULL, fragment->len);
     941          24 :     if (rv == NULL)
     942           0 :         return NULL;
     943          24 :     ncp = (signed char *)PyBytes_AsString(rv);
     944             : 
     945         108 :     for (i = 0; i < fragment->len; i += width) {
     946          84 :         double val = GETRAWSAMPLE(width, fragment->buf, i);
     947          84 :         int ival = fbound(val * factor, minval, maxval);
     948          84 :         SETRAWSAMPLE(width, ncp, i, ival);
     949             :     }
     950          24 :     return rv;
     951             : }
     952             : 
     953             : /*[clinic input]
     954             : audioop.tomono
     955             : 
     956             :     fragment: Py_buffer
     957             :     width: int
     958             :     lfactor: double
     959             :     rfactor: double
     960             :     /
     961             : 
     962             : Convert a stereo fragment to a mono fragment.
     963             : [clinic start generated code]*/
     964             : 
     965             : static PyObject *
     966          24 : audioop_tomono_impl(PyObject *module, Py_buffer *fragment, int width,
     967             :                     double lfactor, double rfactor)
     968             : /*[clinic end generated code: output=235c8277216d4e4e input=c4ec949b3f4dddfa]*/
     969             : {
     970             :     signed char *cp, *ncp;
     971             :     Py_ssize_t len, i;
     972             :     double maxval, minval;
     973             :     PyObject *rv;
     974             : 
     975          24 :     cp = fragment->buf;
     976          24 :     len = fragment->len;
     977          24 :     if (!audioop_check_parameters(module, len, width))
     978           4 :         return NULL;
     979          20 :     if (((len / width) & 1) != 0) {
     980           0 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
     981             :                         "not a whole number of frames");
     982           0 :         return NULL;
     983             :     }
     984             : 
     985          20 :     maxval = (double) maxvals[width];
     986          20 :     minval = (double) minvals[width];
     987             : 
     988          20 :     rv = PyBytes_FromStringAndSize(NULL, len/2);
     989          20 :     if (rv == NULL)
     990           0 :         return NULL;
     991          20 :     ncp = (signed char *)PyBytes_AsString(rv);
     992             : 
     993         160 :     for (i = 0; i < len; i += width*2) {
     994         140 :         double val1 = GETRAWSAMPLE(width, cp, i);
     995         140 :         double val2 = GETRAWSAMPLE(width, cp, i + width);
     996         140 :         double val = val1 * lfactor + val2 * rfactor;
     997         140 :         int ival = fbound(val, minval, maxval);
     998         140 :         SETRAWSAMPLE(width, ncp, i/2, ival);
     999             :     }
    1000          20 :     return rv;
    1001             : }
    1002             : 
    1003             : /*[clinic input]
    1004             : audioop.tostereo
    1005             : 
    1006             :     fragment: Py_buffer
    1007             :     width: int
    1008             :     lfactor: double
    1009             :     rfactor: double
    1010             :     /
    1011             : 
    1012             : Generate a stereo fragment from a mono fragment.
    1013             : [clinic start generated code]*/
    1014             : 
    1015             : static PyObject *
    1016          24 : audioop_tostereo_impl(PyObject *module, Py_buffer *fragment, int width,
    1017             :                       double lfactor, double rfactor)
    1018             : /*[clinic end generated code: output=046f13defa5f1595 input=27b6395ebfdff37a]*/
    1019             : {
    1020             :     signed char *ncp;
    1021             :     Py_ssize_t i;
    1022             :     double maxval, minval;
    1023             :     PyObject *rv;
    1024             : 
    1025          24 :     if (!audioop_check_parameters(module, fragment->len, width))
    1026           4 :         return NULL;
    1027             : 
    1028          20 :     maxval = (double) maxvals[width];
    1029          20 :     minval = (double) minvals[width];
    1030             : 
    1031          20 :     if (fragment->len > PY_SSIZE_T_MAX/2) {
    1032           0 :         PyErr_SetString(PyExc_MemoryError,
    1033             :                         "not enough memory for output buffer");
    1034           0 :         return NULL;
    1035             :     }
    1036             : 
    1037          20 :     rv = PyBytes_FromStringAndSize(NULL, fragment->len*2);
    1038          20 :     if (rv == NULL)
    1039           0 :         return NULL;
    1040          20 :     ncp = (signed char *)PyBytes_AsString(rv);
    1041             : 
    1042         160 :     for (i = 0; i < fragment->len; i += width) {
    1043         140 :         double val = GETRAWSAMPLE(width, fragment->buf, i);
    1044         140 :         int val1 = fbound(val * lfactor, minval, maxval);
    1045         140 :         int val2 = fbound(val * rfactor, minval, maxval);
    1046         140 :         SETRAWSAMPLE(width, ncp, i*2, val1);
    1047         140 :         SETRAWSAMPLE(width, ncp, i*2 + width, val2);
    1048             :     }
    1049          20 :     return rv;
    1050             : }
    1051             : 
    1052             : /*[clinic input]
    1053             : audioop.add
    1054             : 
    1055             :     fragment1: Py_buffer
    1056             :     fragment2: Py_buffer
    1057             :     width: int
    1058             :     /
    1059             : 
    1060             : Return a fragment which is the addition of the two samples passed as parameters.
    1061             : [clinic start generated code]*/
    1062             : 
    1063             : static PyObject *
    1064          24 : audioop_add_impl(PyObject *module, Py_buffer *fragment1,
    1065             :                  Py_buffer *fragment2, int width)
    1066             : /*[clinic end generated code: output=60140af4d1aab6f2 input=4a8d4bae4c1605c7]*/
    1067             : {
    1068             :     signed char *ncp;
    1069             :     Py_ssize_t i;
    1070             :     int minval, maxval, newval;
    1071             :     PyObject *rv;
    1072             : 
    1073          24 :     if (!audioop_check_parameters(module, fragment1->len, width))
    1074           4 :         return NULL;
    1075          20 :     if (fragment1->len != fragment2->len) {
    1076           0 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
    1077             :                         "Lengths should be the same");
    1078           0 :         return NULL;
    1079             :     }
    1080             : 
    1081          20 :     maxval = maxvals[width];
    1082          20 :     minval = minvals[width];
    1083             : 
    1084          20 :     rv = PyBytes_FromStringAndSize(NULL, fragment1->len);
    1085          20 :     if (rv == NULL)
    1086           0 :         return NULL;
    1087          20 :     ncp = (signed char *)PyBytes_AsString(rv);
    1088             : 
    1089          76 :     for (i = 0; i < fragment1->len; i += width) {
    1090          56 :         int val1 = GETRAWSAMPLE(width, fragment1->buf, i);
    1091          56 :         int val2 = GETRAWSAMPLE(width, fragment2->buf, i);
    1092             : 
    1093          56 :         if (width < 4) {
    1094          42 :             newval = val1 + val2;
    1095             :             /* truncate in case of overflow */
    1096          42 :             if (newval > maxval)
    1097           6 :                 newval = maxval;
    1098          36 :             else if (newval < minval)
    1099           6 :                 newval = minval;
    1100             :         }
    1101             :         else {
    1102          14 :             double fval = (double)val1 + (double)val2;
    1103             :             /* truncate in case of overflow */
    1104          14 :             newval = fbound(fval, minval, maxval);
    1105             :         }
    1106             : 
    1107          56 :         SETRAWSAMPLE(width, ncp, i, newval);
    1108             :     }
    1109          20 :     return rv;
    1110             : }
    1111             : 
    1112             : /*[clinic input]
    1113             : audioop.bias
    1114             : 
    1115             :     fragment: Py_buffer
    1116             :     width: int
    1117             :     bias: int
    1118             :     /
    1119             : 
    1120             : Return a fragment that is the original fragment with a bias added to each sample.
    1121             : [clinic start generated code]*/
    1122             : 
    1123             : static PyObject *
    1124         104 : audioop_bias_impl(PyObject *module, Py_buffer *fragment, int width, int bias)
    1125             : /*[clinic end generated code: output=6e0aa8f68f045093 input=2b5cce5c3bb4838c]*/
    1126             : {
    1127             :     signed char *ncp;
    1128             :     Py_ssize_t i;
    1129         104 :     unsigned int val = 0, mask;
    1130             :     PyObject *rv;
    1131             : 
    1132         104 :     if (!audioop_check_parameters(module, fragment->len, width))
    1133           4 :         return NULL;
    1134             : 
    1135         100 :     rv = PyBytes_FromStringAndSize(NULL, fragment->len);
    1136         100 :     if (rv == NULL)
    1137           0 :         return NULL;
    1138         100 :     ncp = (signed char *)PyBytes_AsString(rv);
    1139             : 
    1140         100 :     mask = masks[width];
    1141             : 
    1142         212 :     for (i = 0; i < fragment->len; i += width) {
    1143         112 :         if (width == 1)
    1144          28 :             val = GETINTX(unsigned char, fragment->buf, i);
    1145          84 :         else if (width == 2)
    1146          28 :             val = GETINTX(uint16_t, fragment->buf, i);
    1147          56 :         else if (width == 3)
    1148          28 :             val = ((unsigned int)GETINT24(fragment->buf, i)) & 0xffffffu;
    1149             :         else {
    1150          28 :             assert(width == 4);
    1151          28 :             val = GETINTX(uint32_t, fragment->buf, i);
    1152             :         }
    1153             : 
    1154         112 :         val += (unsigned int)bias;
    1155             :         /* wrap around in case of overflow */
    1156         112 :         val &= mask;
    1157             : 
    1158         112 :         if (width == 1)
    1159          28 :             SETINTX(unsigned char, ncp, i, val);
    1160          84 :         else if (width == 2)
    1161          28 :             SETINTX(uint16_t, ncp, i, val);
    1162          56 :         else if (width == 3)
    1163          28 :             SETINT24(ncp, i, (int)val);
    1164             :         else {
    1165          28 :             assert(width == 4);
    1166          28 :             SETINTX(uint32_t, ncp, i, val);
    1167             :         }
    1168             :     }
    1169         100 :     return rv;
    1170             : }
    1171             : 
    1172             : /*[clinic input]
    1173             : audioop.reverse
    1174             : 
    1175             :     fragment: Py_buffer
    1176             :     width: int
    1177             :     /
    1178             : 
    1179             : Reverse the samples in a fragment and returns the modified fragment.
    1180             : [clinic start generated code]*/
    1181             : 
    1182             : static PyObject *
    1183          20 : audioop_reverse_impl(PyObject *module, Py_buffer *fragment, int width)
    1184             : /*[clinic end generated code: output=b44135698418da14 input=668f890cf9f9d225]*/
    1185             : {
    1186             :     unsigned char *ncp;
    1187             :     Py_ssize_t i;
    1188             :     PyObject *rv;
    1189             : 
    1190          20 :     if (!audioop_check_parameters(module, fragment->len, width))
    1191           4 :         return NULL;
    1192             : 
    1193          16 :     rv = PyBytes_FromStringAndSize(NULL, fragment->len);
    1194          16 :     if (rv == NULL)
    1195           0 :         return NULL;
    1196          16 :     ncp = (unsigned char *)PyBytes_AsString(rv);
    1197             : 
    1198          28 :     for (i = 0; i < fragment->len; i += width) {
    1199          12 :         int val = GETRAWSAMPLE(width, fragment->buf, i);
    1200          12 :         SETRAWSAMPLE(width, ncp, fragment->len - i - width, val);
    1201             :     }
    1202          16 :     return rv;
    1203             : }
    1204             : 
    1205             : /*[clinic input]
    1206             : audioop.byteswap
    1207             : 
    1208             :     fragment: Py_buffer
    1209             :     width: int
    1210             :     /
    1211             : 
    1212             : Convert big-endian samples to little-endian and vice versa.
    1213             : [clinic start generated code]*/
    1214             : 
    1215             : static PyObject *
    1216          23 : audioop_byteswap_impl(PyObject *module, Py_buffer *fragment, int width)
    1217             : /*[clinic end generated code: output=50838a9e4b87cd4d input=fae7611ceffa5c82]*/
    1218             : {
    1219             :     unsigned char *ncp;
    1220             :     Py_ssize_t i;
    1221             :     PyObject *rv;
    1222             : 
    1223          23 :     if (!audioop_check_parameters(module, fragment->len, width))
    1224           0 :         return NULL;
    1225             : 
    1226          23 :     rv = PyBytes_FromStringAndSize(NULL, fragment->len);
    1227          23 :     if (rv == NULL)
    1228           0 :         return NULL;
    1229          23 :     ncp = (unsigned char *)PyBytes_AsString(rv);
    1230             : 
    1231         423 :     for (i = 0; i < fragment->len; i += width) {
    1232             :         int j;
    1233        1256 :         for (j = 0; j < width; j++)
    1234         856 :             ncp[i + width - 1 - j] = ((unsigned char *)fragment->buf)[i + j];
    1235             :     }
    1236          23 :     return rv;
    1237             : }
    1238             : 
    1239             : /*[clinic input]
    1240             : audioop.lin2lin
    1241             : 
    1242             :     fragment: Py_buffer
    1243             :     width: int
    1244             :     newwidth: int
    1245             :     /
    1246             : 
    1247             : Convert samples between 1-, 2-, 3- and 4-byte formats.
    1248             : [clinic start generated code]*/
    1249             : 
    1250             : static PyObject *
    1251          28 : audioop_lin2lin_impl(PyObject *module, Py_buffer *fragment, int width,
    1252             :                      int newwidth)
    1253             : /*[clinic end generated code: output=17b14109248f1d99 input=5ce08c8aa2f24d96]*/
    1254             : {
    1255             :     unsigned char *ncp;
    1256             :     Py_ssize_t i, j;
    1257             :     PyObject *rv;
    1258             : 
    1259          28 :     if (!audioop_check_parameters(module, fragment->len, width))
    1260           4 :         return NULL;
    1261          24 :     if (!audioop_check_size(module, newwidth))
    1262           0 :         return NULL;
    1263             : 
    1264          24 :     if (fragment->len/width > PY_SSIZE_T_MAX/newwidth) {
    1265           0 :         PyErr_SetString(PyExc_MemoryError,
    1266             :                         "not enough memory for output buffer");
    1267           0 :         return NULL;
    1268             :     }
    1269          24 :     rv = PyBytes_FromStringAndSize(NULL, (fragment->len/width)*newwidth);
    1270          24 :     if (rv == NULL)
    1271           0 :         return NULL;
    1272          24 :     ncp = (unsigned char *)PyBytes_AsString(rv);
    1273             : 
    1274         192 :     for (i = j = 0; i < fragment->len; i += width, j += newwidth) {
    1275         168 :         int val = GETSAMPLE32(width, fragment->buf, i);
    1276         168 :         SETSAMPLE32(newwidth, ncp, j, val);
    1277             :     }
    1278          24 :     return rv;
    1279             : }
    1280             : 
    1281             : static int
    1282         144 : gcd(int a, int b)
    1283             : {
    1284         262 :     while (b > 0) {
    1285         118 :         int tmp = a % b;
    1286         118 :         a = b;
    1287         118 :         b = tmp;
    1288             :     }
    1289         144 :     return a;
    1290             : }
    1291             : 
    1292             : /*[clinic input]
    1293             : audioop.ratecv
    1294             : 
    1295             :     fragment: Py_buffer
    1296             :     width: int
    1297             :     nchannels: int
    1298             :     inrate: int
    1299             :     outrate: int
    1300             :     state: object
    1301             :     weightA: int = 1
    1302             :     weightB: int = 0
    1303             :     /
    1304             : 
    1305             : Convert the frame rate of the input fragment.
    1306             : [clinic start generated code]*/
    1307             : 
    1308             : static PyObject *
    1309          76 : audioop_ratecv_impl(PyObject *module, Py_buffer *fragment, int width,
    1310             :                     int nchannels, int inrate, int outrate, PyObject *state,
    1311             :                     int weightA, int weightB)
    1312             : /*[clinic end generated code: output=624038e843243139 input=aff3acdc94476191]*/
    1313             : {
    1314             :     char *cp, *ncp;
    1315             :     Py_ssize_t len;
    1316             :     int chan, d, *prev_i, *cur_i, cur_o;
    1317          76 :     PyObject *samps, *str, *rv = NULL, *channel;
    1318             :     int bytes_per_frame;
    1319             : 
    1320          76 :     if (!audioop_check_size(module, width))
    1321           1 :         return NULL;
    1322          75 :     if (nchannels < 1) {
    1323           0 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
    1324             :                         "# of channels should be >= 1");
    1325           0 :         return NULL;
    1326             :     }
    1327          75 :     if (width > INT_MAX / nchannels) {
    1328             :         /* This overflow test is rigorously correct because
    1329             :            both multiplicands are >= 1.  Use the argument names
    1330             :            from the docs for the error msg. */
    1331           0 :         PyErr_SetString(PyExc_OverflowError,
    1332             :                         "width * nchannels too big for a C int");
    1333           0 :         return NULL;
    1334             :     }
    1335          75 :     bytes_per_frame = width * nchannels;
    1336          75 :     if (weightA < 1 || weightB < 0) {
    1337           0 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
    1338             :             "weightA should be >= 1, weightB should be >= 0");
    1339           0 :         return NULL;
    1340             :     }
    1341          75 :     assert(fragment->len >= 0);
    1342          75 :     if (fragment->len % bytes_per_frame != 0) {
    1343           3 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
    1344             :                         "not a whole number of frames");
    1345           3 :         return NULL;
    1346             :     }
    1347          72 :     if (inrate <= 0 || outrate <= 0) {
    1348           0 :         PyErr_SetString(get_audioop_state(module)->AudioopError,
    1349             :                         "sampling rate not > 0");
    1350           0 :         return NULL;
    1351             :     }
    1352             :     /* divide inrate and outrate by their greatest common divisor */
    1353          72 :     d = gcd(inrate, outrate);
    1354          72 :     inrate /= d;
    1355          72 :     outrate /= d;
    1356             :     /* divide weightA and weightB by their greatest common divisor */
    1357          72 :     d = gcd(weightA, weightB);
    1358          72 :     weightA /= d;
    1359          72 :     weightB /= d;
    1360             : 
    1361          72 :     if ((size_t)nchannels > SIZE_MAX/sizeof(int)) {
    1362           0 :         PyErr_SetString(PyExc_MemoryError,
    1363             :                         "not enough memory for output buffer");
    1364           0 :         return NULL;
    1365             :     }
    1366          72 :     prev_i = (int *) PyMem_Malloc(nchannels * sizeof(int));
    1367          72 :     cur_i = (int *) PyMem_Malloc(nchannels * sizeof(int));
    1368          72 :     if (prev_i == NULL || cur_i == NULL) {
    1369           0 :         (void) PyErr_NoMemory();
    1370           0 :         goto exit;
    1371             :     }
    1372             : 
    1373          72 :     len = fragment->len / bytes_per_frame; /* # of frames */
    1374             : 
    1375          72 :     if (state == Py_None) {
    1376          45 :         d = -outrate;
    1377         106 :         for (chan = 0; chan < nchannels; chan++)
    1378          61 :             prev_i[chan] = cur_i[chan] = 0;
    1379             :     }
    1380             :     else {
    1381          27 :         if (!PyTuple_Check(state)) {
    1382           1 :             PyErr_SetString(PyExc_TypeError, "state must be a tuple or None");
    1383           1 :             goto exit;
    1384             :         }
    1385          26 :         if (!PyArg_ParseTuple(state,
    1386             :                         "iO!;ratecv(): illegal state argument",
    1387             :                         &d, &PyTuple_Type, &samps))
    1388           0 :             goto exit;
    1389          26 :         if (PyTuple_Size(samps) != nchannels) {
    1390           0 :             PyErr_SetString(get_audioop_state(module)->AudioopError,
    1391             :                             "illegal state argument");
    1392           0 :             goto exit;
    1393             :         }
    1394          51 :         for (chan = 0; chan < nchannels; chan++) {
    1395          26 :             channel = PyTuple_GetItem(samps, chan);
    1396          26 :             if (!PyTuple_Check(channel)) {
    1397           1 :                 PyErr_SetString(PyExc_TypeError,
    1398             :                                 "ratecv(): illegal state argument");
    1399           1 :                 goto exit;
    1400             :             }
    1401          25 :             if (!PyArg_ParseTuple(channel,
    1402             :                                   "ii;ratecv(): illegal state argument",
    1403          25 :                                   &prev_i[chan], &cur_i[chan]))
    1404             :             {
    1405           0 :                 goto exit;
    1406             :             }
    1407             :         }
    1408             :     }
    1409             : 
    1410             :     /* str <- Space for the output buffer. */
    1411          70 :     if (len == 0)
    1412          20 :         str = PyBytes_FromStringAndSize(NULL, 0);
    1413             :     else {
    1414             :         /* There are len input frames, so we need (mathematically)
    1415             :            ceiling(len*outrate/inrate) output frames, and each frame
    1416             :            requires bytes_per_frame bytes.  Computing this
    1417             :            without spurious overflow is the challenge; we can
    1418             :            settle for a reasonable upper bound, though, in this
    1419             :            case ceiling(len/inrate) * outrate. */
    1420             : 
    1421             :         /* compute ceiling(len/inrate) without overflow */
    1422          50 :         Py_ssize_t q = 1 + (len - 1) / inrate;
    1423          50 :         if (outrate > PY_SSIZE_T_MAX / q / bytes_per_frame)
    1424           0 :             str = NULL;
    1425             :         else
    1426          50 :             str = PyBytes_FromStringAndSize(NULL,
    1427          50 :                                             q * outrate * bytes_per_frame);
    1428             :     }
    1429          70 :     if (str == NULL) {
    1430           0 :         PyErr_SetString(PyExc_MemoryError,
    1431             :             "not enough memory for output buffer");
    1432           0 :         goto exit;
    1433             :     }
    1434          70 :     ncp = PyBytes_AsString(str);
    1435          70 :     cp = fragment->buf;
    1436             : 
    1437             :     for (;;) {
    1438         418 :         while (d < 0) {
    1439         244 :             if (len == 0) {
    1440          70 :                 samps = PyTuple_New(nchannels);
    1441          70 :                 if (samps == NULL)
    1442           0 :                     goto exit;
    1443         156 :                 for (chan = 0; chan < nchannels; chan++)
    1444          86 :                     PyTuple_SetItem(samps, chan,
    1445             :                         Py_BuildValue("(ii)",
    1446          86 :                                       prev_i[chan],
    1447          86 :                                       cur_i[chan]));
    1448          70 :                 if (PyErr_Occurred())
    1449           0 :                     goto exit;
    1450             :                 /* We have checked before that the length
    1451             :                  * of the string fits into int. */
    1452          70 :                 len = (Py_ssize_t)(ncp - PyBytes_AsString(str));
    1453          70 :                 rv = PyBytes_FromStringAndSize
    1454          70 :                     (PyBytes_AsString(str), len);
    1455          70 :                 Py_DECREF(str);
    1456          70 :                 str = rv;
    1457          70 :                 if (str == NULL)
    1458           0 :                     goto exit;
    1459          70 :                 rv = Py_BuildValue("(O(iO))", str, d, samps);
    1460          70 :                 Py_DECREF(samps);
    1461          70 :                 Py_DECREF(str);
    1462          70 :                 goto exit; /* return rv */
    1463             :             }
    1464         348 :             for (chan = 0; chan < nchannels; chan++) {
    1465         174 :                 prev_i[chan] = cur_i[chan];
    1466         174 :                 cur_i[chan] = GETSAMPLE32(width, cp, 0);
    1467         174 :                 cp += width;
    1468             :                 /* implements a simple digital filter */
    1469         174 :                 cur_i[chan] = (int)(
    1470         174 :                     ((double)weightA * (double)cur_i[chan] +
    1471         174 :                      (double)weightB * (double)prev_i[chan]) /
    1472         174 :                     ((double)weightA + (double)weightB));
    1473             :             }
    1474         174 :             len--;
    1475         174 :             d += outrate;
    1476             :         }
    1477         401 :         while (d >= 0) {
    1478         454 :             for (chan = 0; chan < nchannels; chan++) {
    1479         227 :                 cur_o = (int)(((double)prev_i[chan] * (double)d +
    1480         227 :                          (double)cur_i[chan] * (double)(outrate - d)) /
    1481         227 :                     (double)outrate);
    1482         227 :                 SETSAMPLE32(width, ncp, 0, cur_o);
    1483         227 :                 ncp += width;
    1484             :             }
    1485         227 :             d -= inrate;
    1486             :         }
    1487             :     }
    1488          72 :   exit:
    1489          72 :     PyMem_Free(prev_i);
    1490          72 :     PyMem_Free(cur_i);
    1491          72 :     return rv;
    1492             : }
    1493             : 
    1494             : /*[clinic input]
    1495             : audioop.lin2ulaw
    1496             : 
    1497             :     fragment: Py_buffer
    1498             :     width: int
    1499             :     /
    1500             : 
    1501             : Convert samples in the audio fragment to u-LAW encoding.
    1502             : [clinic start generated code]*/
    1503             : 
    1504             : static PyObject *
    1505         200 : audioop_lin2ulaw_impl(PyObject *module, Py_buffer *fragment, int width)
    1506             : /*[clinic end generated code: output=14fb62b16fe8ea8e input=2450d1b870b6bac2]*/
    1507             : {
    1508             :     unsigned char *ncp;
    1509             :     Py_ssize_t i;
    1510             :     PyObject *rv;
    1511             : 
    1512         200 :     if (!audioop_check_parameters(module, fragment->len, width))
    1513           4 :         return NULL;
    1514             : 
    1515         196 :     rv = PyBytes_FromStringAndSize(NULL, fragment->len/width);
    1516         196 :     if (rv == NULL)
    1517           0 :         return NULL;
    1518         196 :     ncp = (unsigned char *)PyBytes_AsString(rv);
    1519             : 
    1520       16439 :     for (i = 0; i < fragment->len; i += width) {
    1521       16243 :         int val = GETSAMPLE32(width, fragment->buf, i);
    1522       16243 :         *ncp++ = st_14linear2ulaw(val >> 18);
    1523             :     }
    1524         196 :     return rv;
    1525             : }
    1526             : 
    1527             : /*[clinic input]
    1528             : audioop.ulaw2lin
    1529             : 
    1530             :     fragment: Py_buffer
    1531             :     width: int
    1532             :     /
    1533             : 
    1534             : Convert sound fragments in u-LAW encoding to linearly encoded sound fragments.
    1535             : [clinic start generated code]*/
    1536             : 
    1537             : static PyObject *
    1538         219 : audioop_ulaw2lin_impl(PyObject *module, Py_buffer *fragment, int width)
    1539             : /*[clinic end generated code: output=378356b047521ba2 input=45d53ddce5be7d06]*/
    1540             : {
    1541             :     unsigned char *cp;
    1542             :     signed char *ncp;
    1543             :     Py_ssize_t i;
    1544             :     PyObject *rv;
    1545             : 
    1546         219 :     if (!audioop_check_size(module, width))
    1547           4 :         return NULL;
    1548             : 
    1549         215 :     if (fragment->len > PY_SSIZE_T_MAX/width) {
    1550           0 :         PyErr_SetString(PyExc_MemoryError,
    1551             :                         "not enough memory for output buffer");
    1552           0 :         return NULL;
    1553             :     }
    1554         215 :     rv = PyBytes_FromStringAndSize(NULL, fragment->len*width);
    1555         215 :     if (rv == NULL)
    1556           0 :         return NULL;
    1557         215 :     ncp = (signed char *)PyBytes_AsString(rv);
    1558             : 
    1559         215 :     cp = fragment->buf;
    1560       43148 :     for (i = 0; i < fragment->len*width; i += width) {
    1561       42933 :         int val = st_ulaw2linear16(*cp++) << 16;
    1562       42933 :         SETSAMPLE32(width, ncp, i, val);
    1563             :     }
    1564         215 :     return rv;
    1565             : }
    1566             : 
    1567             : /*[clinic input]
    1568             : audioop.lin2alaw
    1569             : 
    1570             :     fragment: Py_buffer
    1571             :     width: int
    1572             :     /
    1573             : 
    1574             : Convert samples in the audio fragment to a-LAW encoding.
    1575             : [clinic start generated code]*/
    1576             : 
    1577             : static PyObject *
    1578         106 : audioop_lin2alaw_impl(PyObject *module, Py_buffer *fragment, int width)
    1579             : /*[clinic end generated code: output=d076f130121a82f0 input=ffb1ef8bb39da945]*/
    1580             : {
    1581             :     unsigned char *ncp;
    1582             :     Py_ssize_t i;
    1583             :     PyObject *rv;
    1584             : 
    1585         106 :     if (!audioop_check_parameters(module, fragment->len, width))
    1586           4 :         return NULL;
    1587             : 
    1588         102 :     rv = PyBytes_FromStringAndSize(NULL, fragment->len/width);
    1589         102 :     if (rv == NULL)
    1590           0 :         return NULL;
    1591         102 :     ncp = (unsigned char *)PyBytes_AsString(rv);
    1592             : 
    1593        8582 :     for (i = 0; i < fragment->len; i += width) {
    1594        8480 :         int val = GETSAMPLE32(width, fragment->buf, i);
    1595        8480 :         *ncp++ = st_linear2alaw(val >> 19);
    1596             :     }
    1597         102 :     return rv;
    1598             : }
    1599             : 
    1600             : /*[clinic input]
    1601             : audioop.alaw2lin
    1602             : 
    1603             :     fragment: Py_buffer
    1604             :     width: int
    1605             :     /
    1606             : 
    1607             : Convert sound fragments in a-LAW encoding to linearly encoded sound fragments.
    1608             : [clinic start generated code]*/
    1609             : 
    1610             : static PyObject *
    1611         118 : audioop_alaw2lin_impl(PyObject *module, Py_buffer *fragment, int width)
    1612             : /*[clinic end generated code: output=85c365ec559df647 input=4140626046cd1772]*/
    1613             : {
    1614             :     unsigned char *cp;
    1615             :     signed char *ncp;
    1616             :     Py_ssize_t i;
    1617             :     int val;
    1618             :     PyObject *rv;
    1619             : 
    1620         118 :     if (!audioop_check_size(module, width))
    1621           4 :         return NULL;
    1622             : 
    1623         114 :     if (fragment->len > PY_SSIZE_T_MAX/width) {
    1624           0 :         PyErr_SetString(PyExc_MemoryError,
    1625             :                         "not enough memory for output buffer");
    1626           0 :         return NULL;
    1627             :     }
    1628         114 :     rv = PyBytes_FromStringAndSize(NULL, fragment->len*width);
    1629         114 :     if (rv == NULL)
    1630           0 :         return NULL;
    1631         114 :     ncp = (signed char *)PyBytes_AsString(rv);
    1632         114 :     cp = fragment->buf;
    1633             : 
    1634       22062 :     for (i = 0; i < fragment->len*width; i += width) {
    1635       21948 :         val = st_alaw2linear16(*cp++) << 16;
    1636       21948 :         SETSAMPLE32(width, ncp, i, val);
    1637             :     }
    1638         114 :     return rv;
    1639             : }
    1640             : 
    1641             : /*[clinic input]
    1642             : audioop.lin2adpcm
    1643             : 
    1644             :     fragment: Py_buffer
    1645             :     width: int
    1646             :     state: object
    1647             :     /
    1648             : 
    1649             : Convert samples to 4 bit Intel/DVI ADPCM encoding.
    1650             : [clinic start generated code]*/
    1651             : 
    1652             : static PyObject *
    1653          19 : audioop_lin2adpcm_impl(PyObject *module, Py_buffer *fragment, int width,
    1654             :                        PyObject *state)
    1655             : /*[clinic end generated code: output=cc19f159f16c6793 input=12919d549b90c90a]*/
    1656             : {
    1657             :     signed char *ncp;
    1658             :     Py_ssize_t i;
    1659             :     int step, valpred, delta,
    1660             :         index, sign, vpdiff, diff;
    1661          19 :     PyObject *rv = NULL, *str;
    1662          19 :     int outputbuffer = 0, bufferstep;
    1663             : 
    1664          19 :     if (!audioop_check_parameters(module, fragment->len, width))
    1665           4 :         return NULL;
    1666             : 
    1667             :     /* Decode state, should have (value, step) */
    1668          15 :     if ( state == Py_None ) {
    1669             :         /* First time, it seems. Set defaults */
    1670          10 :         valpred = 0;
    1671          10 :         index = 0;
    1672             :     }
    1673           5 :     else if (!PyTuple_Check(state)) {
    1674           1 :         PyErr_SetString(PyExc_TypeError, "state must be a tuple or None");
    1675           1 :         return NULL;
    1676             :     }
    1677           4 :     else if (!PyArg_ParseTuple(state, "ii;lin2adpcm(): illegal state argument",
    1678             :                                &valpred, &index))
    1679             :     {
    1680           0 :         return NULL;
    1681             :     }
    1682           4 :     else if (valpred >= 0x8000 || valpred < -0x8000 ||
    1683           2 :              (size_t)index >= Py_ARRAY_LENGTH(stepsizeTable)) {
    1684           4 :         PyErr_SetString(PyExc_ValueError, "bad state");
    1685           4 :         return NULL;
    1686             :     }
    1687             : 
    1688          10 :     str = PyBytes_FromStringAndSize(NULL, fragment->len/(width*2));
    1689          10 :     if (str == NULL)
    1690           0 :         return NULL;
    1691          10 :     ncp = (signed char *)PyBytes_AsString(str);
    1692             : 
    1693          10 :     step = stepsizeTable[index];
    1694          10 :     bufferstep = 1;
    1695             : 
    1696          92 :     for (i = 0; i < fragment->len; i += width) {
    1697          82 :         int val = GETSAMPLE32(width, fragment->buf, i) >> 16;
    1698             : 
    1699             :         /* Step 1 - compute difference with previous value */
    1700          82 :         if (val < valpred) {
    1701          15 :             diff = valpred - val;
    1702          15 :             sign = 8;
    1703             :         }
    1704             :         else {
    1705          67 :             diff = val - valpred;
    1706          67 :             sign = 0;
    1707             :         }
    1708             : 
    1709             :         /* Step 2 - Divide and clamp */
    1710             :         /* Note:
    1711             :         ** This code *approximately* computes:
    1712             :         **    delta = diff*4/step;
    1713             :         **    vpdiff = (delta+0.5)*step/4;
    1714             :         ** but in shift step bits are dropped. The net result of this
    1715             :         ** is that even if you have fast mul/div hardware you cannot
    1716             :         ** put it to good use since the fixup would be too expensive.
    1717             :         */
    1718          82 :         delta = 0;
    1719          82 :         vpdiff = (step >> 3);
    1720             : 
    1721          82 :         if ( diff >= step ) {
    1722          30 :             delta = 4;
    1723          30 :             diff -= step;
    1724          30 :             vpdiff += step;
    1725             :         }
    1726          82 :         step >>= 1;
    1727          82 :         if ( diff >= step  ) {
    1728          33 :             delta |= 2;
    1729          33 :             diff -= step;
    1730          33 :             vpdiff += step;
    1731             :         }
    1732          82 :         step >>= 1;
    1733          82 :         if ( diff >= step ) {
    1734          30 :             delta |= 1;
    1735          30 :             vpdiff += step;
    1736             :         }
    1737             : 
    1738             :         /* Step 3 - Update previous value */
    1739          82 :         if ( sign )
    1740          15 :             valpred -= vpdiff;
    1741             :         else
    1742          67 :             valpred += vpdiff;
    1743             : 
    1744             :         /* Step 4 - Clamp previous value to 16 bits */
    1745          82 :         if ( valpred > 32767 )
    1746           0 :             valpred = 32767;
    1747          82 :         else if ( valpred < -32768 )
    1748           0 :             valpred = -32768;
    1749             : 
    1750             :         /* Step 5 - Assemble value, update index and step values */
    1751          82 :         delta |= sign;
    1752             : 
    1753          82 :         index += indexTable[delta];
    1754          82 :         if ( index < 0 ) index = 0;
    1755          82 :         if ( index > 88 ) index = 88;
    1756          82 :         step = stepsizeTable[index];
    1757             : 
    1758             :         /* Step 6 - Output value */
    1759          82 :         if ( bufferstep ) {
    1760          44 :             outputbuffer = (delta << 4) & 0xf0;
    1761             :         } else {
    1762          38 :             *ncp++ = (delta & 0x0f) | outputbuffer;
    1763             :         }
    1764          82 :         bufferstep = !bufferstep;
    1765             :     }
    1766          10 :     rv = Py_BuildValue("(O(ii))", str, valpred, index);
    1767          10 :     Py_DECREF(str);
    1768          10 :     return rv;
    1769             : }
    1770             : 
    1771             : /*[clinic input]
    1772             : audioop.adpcm2lin
    1773             : 
    1774             :     fragment: Py_buffer
    1775             :     width: int
    1776             :     state: object
    1777             :     /
    1778             : 
    1779             : Decode an Intel/DVI ADPCM coded fragment to a linear fragment.
    1780             : [clinic start generated code]*/
    1781             : 
    1782             : static PyObject *
    1783          19 : audioop_adpcm2lin_impl(PyObject *module, Py_buffer *fragment, int width,
    1784             :                        PyObject *state)
    1785             : /*[clinic end generated code: output=3440ea105acb3456 input=f5221144f5ca9ef0]*/
    1786             : {
    1787             :     signed char *cp;
    1788             :     signed char *ncp;
    1789             :     Py_ssize_t i, outlen;
    1790             :     int valpred, step, delta, index, sign, vpdiff;
    1791             :     PyObject *rv, *str;
    1792          19 :     int inputbuffer = 0, bufferstep;
    1793             : 
    1794          19 :     if (!audioop_check_size(module, width))
    1795           4 :         return NULL;
    1796             : 
    1797             :     /* Decode state, should have (value, step) */
    1798          15 :     if ( state == Py_None ) {
    1799             :         /* First time, it seems. Set defaults */
    1800          10 :         valpred = 0;
    1801          10 :         index = 0;
    1802             :     }
    1803           5 :     else if (!PyTuple_Check(state)) {
    1804           1 :         PyErr_SetString(PyExc_TypeError, "state must be a tuple or None");
    1805           1 :         return NULL;
    1806             :     }
    1807           4 :     else if (!PyArg_ParseTuple(state, "ii;adpcm2lin(): illegal state argument",
    1808             :                                &valpred, &index))
    1809             :     {
    1810           0 :         return NULL;
    1811             :     }
    1812           4 :     else if (valpred >= 0x8000 || valpred < -0x8000 ||
    1813           2 :              (size_t)index >= Py_ARRAY_LENGTH(stepsizeTable)) {
    1814           4 :         PyErr_SetString(PyExc_ValueError, "bad state");
    1815           4 :         return NULL;
    1816             :     }
    1817             : 
    1818          10 :     if (fragment->len > (PY_SSIZE_T_MAX/2)/width) {
    1819           0 :         PyErr_SetString(PyExc_MemoryError,
    1820             :                         "not enough memory for output buffer");
    1821           0 :         return NULL;
    1822             :     }
    1823          10 :     outlen = fragment->len*width*2;
    1824          10 :     str = PyBytes_FromStringAndSize(NULL, outlen);
    1825          10 :     if (str == NULL)
    1826           0 :         return NULL;
    1827          10 :     ncp = (signed char *)PyBytes_AsString(str);
    1828          10 :     cp = fragment->buf;
    1829             : 
    1830          10 :     step = stepsizeTable[index];
    1831          10 :     bufferstep = 0;
    1832             : 
    1833          86 :     for (i = 0; i < outlen; i += width) {
    1834             :         /* Step 1 - get the delta value and compute next index */
    1835          76 :         if ( bufferstep ) {
    1836          38 :             delta = inputbuffer & 0xf;
    1837             :         } else {
    1838          38 :             inputbuffer = *cp++;
    1839          38 :             delta = (inputbuffer >> 4) & 0xf;
    1840             :         }
    1841             : 
    1842          76 :         bufferstep = !bufferstep;
    1843             : 
    1844             :         /* Step 2 - Find new index value (for later) */
    1845          76 :         index += indexTable[delta];
    1846          76 :         if ( index < 0 ) index = 0;
    1847          76 :         if ( index > 88 ) index = 88;
    1848             : 
    1849             :         /* Step 3 - Separate sign and magnitude */
    1850          76 :         sign = delta & 8;
    1851          76 :         delta = delta & 7;
    1852             : 
    1853             :         /* Step 4 - Compute difference and new predicted value */
    1854             :         /*
    1855             :         ** Computes 'vpdiff = (delta+0.5)*step/4', but see comment
    1856             :         ** in adpcm_coder.
    1857             :         */
    1858          76 :         vpdiff = step >> 3;
    1859          76 :         if ( delta & 4 ) vpdiff += step;
    1860          76 :         if ( delta & 2 ) vpdiff += step>>1;
    1861          76 :         if ( delta & 1 ) vpdiff += step>>2;
    1862             : 
    1863          76 :         if ( sign )
    1864          12 :             valpred -= vpdiff;
    1865             :         else
    1866          64 :             valpred += vpdiff;
    1867             : 
    1868             :         /* Step 5 - clamp output value */
    1869          76 :         if ( valpred > 32767 )
    1870           0 :             valpred = 32767;
    1871          76 :         else if ( valpred < -32768 )
    1872           0 :             valpred = -32768;
    1873             : 
    1874             :         /* Step 6 - Update step value */
    1875          76 :         step = stepsizeTable[index];
    1876             : 
    1877             :         /* Step 6 - Output value */
    1878          76 :         SETSAMPLE32(width, ncp, i, valpred << 16);
    1879             :     }
    1880             : 
    1881          10 :     rv = Py_BuildValue("(O(ii))", str, valpred, index);
    1882          10 :     Py_DECREF(str);
    1883          10 :     return rv;
    1884             : }
    1885             : 
    1886             : #include "clinic/audioop.c.h"
    1887             : 
    1888             : static PyMethodDef audioop_methods[] = {
    1889             :     AUDIOOP_MAX_METHODDEF
    1890             :     AUDIOOP_MINMAX_METHODDEF
    1891             :     AUDIOOP_AVG_METHODDEF
    1892             :     AUDIOOP_MAXPP_METHODDEF
    1893             :     AUDIOOP_AVGPP_METHODDEF
    1894             :     AUDIOOP_RMS_METHODDEF
    1895             :     AUDIOOP_FINDFIT_METHODDEF
    1896             :     AUDIOOP_FINDMAX_METHODDEF
    1897             :     AUDIOOP_FINDFACTOR_METHODDEF
    1898             :     AUDIOOP_CROSS_METHODDEF
    1899             :     AUDIOOP_MUL_METHODDEF
    1900             :     AUDIOOP_ADD_METHODDEF
    1901             :     AUDIOOP_BIAS_METHODDEF
    1902             :     AUDIOOP_ULAW2LIN_METHODDEF
    1903             :     AUDIOOP_LIN2ULAW_METHODDEF
    1904             :     AUDIOOP_ALAW2LIN_METHODDEF
    1905             :     AUDIOOP_LIN2ALAW_METHODDEF
    1906             :     AUDIOOP_LIN2LIN_METHODDEF
    1907             :     AUDIOOP_ADPCM2LIN_METHODDEF
    1908             :     AUDIOOP_LIN2ADPCM_METHODDEF
    1909             :     AUDIOOP_TOMONO_METHODDEF
    1910             :     AUDIOOP_TOSTEREO_METHODDEF
    1911             :     AUDIOOP_GETSAMPLE_METHODDEF
    1912             :     AUDIOOP_REVERSE_METHODDEF
    1913             :     AUDIOOP_BYTESWAP_METHODDEF
    1914             :     AUDIOOP_RATECV_METHODDEF
    1915             :     { 0,          0 }
    1916             : };
    1917             : 
    1918             : static int
    1919          82 : audioop_traverse(PyObject *module, visitproc visit, void *arg)
    1920             : {
    1921          82 :     audioop_state *state = get_audioop_state(module);
    1922          82 :     Py_VISIT(state->AudioopError);
    1923          82 :     return 0;
    1924             : }
    1925             : 
    1926             : static int
    1927           8 : audioop_clear(PyObject *module)
    1928             : {
    1929           8 :     audioop_state *state = get_audioop_state(module);
    1930           8 :     Py_CLEAR(state->AudioopError);
    1931           8 :     return 0;
    1932             : }
    1933             : 
    1934             : static void
    1935           4 : audioop_free(void *module) {
    1936           4 :     audioop_clear((PyObject *)module);
    1937           4 : }
    1938             : 
    1939             : static int
    1940           4 : audioop_exec(PyObject* module)
    1941             : {
    1942           4 :     audioop_state *state = get_audioop_state(module);
    1943             : 
    1944           4 :     state->AudioopError = PyErr_NewException("audioop.error", NULL, NULL);
    1945           4 :     if (state->AudioopError == NULL) {
    1946           0 :         return -1;
    1947             :     }
    1948             : 
    1949           4 :     Py_INCREF(state->AudioopError);
    1950           4 :     if (PyModule_AddObject(module, "error", state->AudioopError) < 0) {
    1951           0 :         Py_DECREF(state->AudioopError);
    1952           0 :         return -1;
    1953             :     }
    1954             : 
    1955           4 :     return 0;
    1956             : }
    1957             : 
    1958             : static PyModuleDef_Slot audioop_slots[] = {
    1959             :     {Py_mod_exec, audioop_exec},
    1960             :     {0, NULL}
    1961             : };
    1962             : 
    1963             : static struct PyModuleDef audioopmodule = {
    1964             :     PyModuleDef_HEAD_INIT,
    1965             :     "audioop",
    1966             :     NULL,
    1967             :     sizeof(audioop_state),
    1968             :     audioop_methods,
    1969             :     audioop_slots,
    1970             :     audioop_traverse,
    1971             :     audioop_clear,
    1972             :     audioop_free
    1973             : };
    1974             : 
    1975             : PyMODINIT_FUNC
    1976           4 : PyInit_audioop(void)
    1977             : {
    1978           4 :     if (PyErr_WarnEx(PyExc_DeprecationWarning,
    1979             :                      "'audioop' is deprecated and slated for removal in "
    1980             :                      "Python 3.13",
    1981             :                      7)) {
    1982           0 :         return NULL;
    1983             :     }
    1984             : 
    1985           4 :     return PyModuleDef_Init(&audioopmodule);
    1986             : }

Generated by: LCOV version 1.14