Line data Source code
1 : /*
2 : ** Routines to represent binary data in ASCII and vice-versa
3 : **
4 : ** This module currently supports the following encodings:
5 : ** uuencode:
6 : ** each line encodes 45 bytes (except possibly the last)
7 : ** First char encodes (binary) length, rest data
8 : ** each char encodes 6 bits, as follows:
9 : ** binary: 01234567 abcdefgh ijklmnop
10 : ** ascii: 012345 67abcd efghij klmnop
11 : ** ASCII encoding method is "excess-space": 000000 is encoded as ' ', etc.
12 : ** short binary data is zero-extended (so the bits are always in the
13 : ** right place), this does *not* reflect in the length.
14 : ** base64:
15 : ** Line breaks are insignificant, but lines are at most 76 chars
16 : ** each char encodes 6 bits, in similar order as uucode/hqx. Encoding
17 : ** is done via a table.
18 : ** Short binary data is filled (in ASCII) with '='.
19 : ** hqx:
20 : ** File starts with introductory text, real data starts and ends
21 : ** with colons.
22 : ** Data consists of three similar parts: info, datafork, resourcefork.
23 : ** Each part is protected (at the end) with a 16-bit crc
24 : ** The binary data is run-length encoded, and then ascii-fied:
25 : ** binary: 01234567 abcdefgh ijklmnop
26 : ** ascii: 012345 67abcd efghij klmnop
27 : ** ASCII encoding is table-driven, see the code.
28 : ** Short binary data results in the runt ascii-byte being output with
29 : ** the bits in the right place.
30 : **
31 : ** While I was reading dozens of programs that encode or decode the formats
32 : ** here (documentation? hihi:-) I have formulated Jansen's Observation:
33 : **
34 : ** Programs that encode binary data in ASCII are written in
35 : ** such a style that they are as unreadable as possible. Devices used
36 : ** include unnecessary global variables, burying important tables
37 : ** in unrelated sourcefiles, putting functions in include files,
38 : ** using seemingly-descriptive variable names for different purposes,
39 : ** calls to empty subroutines and a host of others.
40 : **
41 : ** I have attempted to break with this tradition, but I guess that that
42 : ** does make the performance sub-optimal. Oh well, too bad...
43 : **
44 : ** Jack Jansen, CWI, July 1995.
45 : **
46 : ** Added support for quoted-printable encoding, based on rfc 1521 et al
47 : ** quoted-printable encoding specifies that non printable characters (anything
48 : ** below 32 and above 126) be encoded as =XX where XX is the hexadecimal value
49 : ** of the character. It also specifies some other behavior to enable 8bit data
50 : ** in a mail message with little difficulty (maximum line sizes, protecting
51 : ** some cases of whitespace, etc).
52 : **
53 : ** Brandon Long, September 2001.
54 : */
55 :
56 : #ifndef Py_BUILD_CORE_BUILTIN
57 : # define Py_BUILD_CORE_MODULE 1
58 : #endif
59 :
60 : #define PY_SSIZE_T_CLEAN
61 :
62 : #include "Python.h"
63 : #include "pycore_long.h" // _PyLong_DigitValue
64 : #include "pycore_strhex.h" // _Py_strhex_bytes_with_sep()
65 : #ifdef USE_ZLIB_CRC32
66 : # include "zlib.h"
67 : #endif
68 :
69 : typedef struct binascii_state {
70 : PyObject *Error;
71 : PyObject *Incomplete;
72 : } binascii_state;
73 :
74 : static inline binascii_state *
75 24735 : get_binascii_state(PyObject *module)
76 : {
77 24735 : return (binascii_state *)PyModule_GetState(module);
78 : }
79 :
80 :
81 : static const unsigned char table_a2b_base64[] = {
82 : -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
83 : -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
84 : -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,62, -1,-1,-1,63,
85 : 52,53,54,55, 56,57,58,59, 60,61,-1,-1, -1, 0,-1,-1, /* Note PAD->0 */
86 : -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,12,13,14,
87 : 15,16,17,18, 19,20,21,22, 23,24,25,-1, -1,-1,-1,-1,
88 : -1,26,27,28, 29,30,31,32, 33,34,35,36, 37,38,39,40,
89 : 41,42,43,44, 45,46,47,48, 49,50,51,-1, -1,-1,-1,-1,
90 :
91 : -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
92 : -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
93 : -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
94 : -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
95 : -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
96 : -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
97 : -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
98 : -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
99 : };
100 :
101 : #define BASE64_PAD '='
102 :
103 : /* Max binary chunk size; limited only by available memory */
104 : #define BASE64_MAXBIN ((PY_SSIZE_T_MAX - 3) / 2)
105 :
106 : static const unsigned char table_b2a_base64[] =
107 : "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
108 :
109 :
110 : static const unsigned short crctab_hqx[256] = {
111 : 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
112 : 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
113 : 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
114 : 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
115 : 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
116 : 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
117 : 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
118 : 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
119 : 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
120 : 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
121 : 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
122 : 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
123 : 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
124 : 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
125 : 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
126 : 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
127 : 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
128 : 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
129 : 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
130 : 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
131 : 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
132 : 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
133 : 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
134 : 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
135 : 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
136 : 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
137 : 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
138 : 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
139 : 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
140 : 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
141 : 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
142 : 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0,
143 : };
144 :
145 : /*[clinic input]
146 : module binascii
147 : [clinic start generated code]*/
148 : /*[clinic end generated code: output=da39a3ee5e6b4b0d input=de89fb46bcaf3fec]*/
149 :
150 : /*[python input]
151 :
152 : class ascii_buffer_converter(CConverter):
153 : type = 'Py_buffer'
154 : converter = 'ascii_buffer_converter'
155 : impl_by_reference = True
156 : c_default = "{NULL, NULL}"
157 :
158 : def cleanup(self):
159 : name = self.name
160 : return "".join(["if (", name, ".obj)\n PyBuffer_Release(&", name, ");\n"])
161 :
162 : [python start generated code]*/
163 : /*[python end generated code: output=da39a3ee5e6b4b0d input=3eb7b63610da92cd]*/
164 :
165 : static int
166 18662 : ascii_buffer_converter(PyObject *arg, Py_buffer *buf)
167 : {
168 18662 : if (arg == NULL) {
169 0 : PyBuffer_Release(buf);
170 0 : return 1;
171 : }
172 18662 : if (PyUnicode_Check(arg)) {
173 386 : if (PyUnicode_READY(arg) < 0)
174 0 : return 0;
175 386 : if (!PyUnicode_IS_ASCII(arg)) {
176 20 : PyErr_SetString(PyExc_ValueError,
177 : "string argument should contain only ASCII characters");
178 20 : return 0;
179 : }
180 366 : assert(PyUnicode_KIND(arg) == PyUnicode_1BYTE_KIND);
181 366 : buf->buf = (void *) PyUnicode_1BYTE_DATA(arg);
182 366 : buf->len = PyUnicode_GET_LENGTH(arg);
183 366 : buf->obj = NULL;
184 366 : return 1;
185 : }
186 18276 : if (PyObject_GetBuffer(arg, buf, PyBUF_SIMPLE) != 0) {
187 0 : PyErr_Format(PyExc_TypeError,
188 : "argument should be bytes, buffer or ASCII string, "
189 0 : "not '%.100s'", Py_TYPE(arg)->tp_name);
190 0 : return 0;
191 : }
192 18276 : if (!PyBuffer_IsContiguous(buf, 'C')) {
193 0 : PyErr_Format(PyExc_TypeError,
194 : "argument should be a contiguous buffer, "
195 0 : "not '%.100s'", Py_TYPE(arg)->tp_name);
196 0 : PyBuffer_Release(buf);
197 0 : return 0;
198 : }
199 18276 : return Py_CLEANUP_SUPPORTED;
200 : }
201 :
202 : #include "clinic/binascii.c.h"
203 :
204 : /*[clinic input]
205 : binascii.a2b_uu
206 :
207 : data: ascii_buffer
208 : /
209 :
210 : Decode a line of uuencoded data.
211 : [clinic start generated code]*/
212 :
213 : static PyObject *
214 196 : binascii_a2b_uu_impl(PyObject *module, Py_buffer *data)
215 : /*[clinic end generated code: output=e027f8e0b0598742 input=7cafeaf73df63d1c]*/
216 : {
217 : const unsigned char *ascii_data;
218 : unsigned char *bin_data;
219 196 : int leftbits = 0;
220 : unsigned char this_ch;
221 196 : unsigned int leftchar = 0;
222 : PyObject *rv;
223 : Py_ssize_t ascii_len, bin_len;
224 : binascii_state *state;
225 :
226 196 : ascii_data = data->buf;
227 196 : ascii_len = data->len;
228 :
229 196 : assert(ascii_len >= 0);
230 :
231 : /* First byte: binary data length (in bytes) */
232 196 : bin_len = (*ascii_data++ - ' ') & 077;
233 196 : ascii_len--;
234 :
235 : /* Allocate the buffer */
236 196 : if ( (rv=PyBytes_FromStringAndSize(NULL, bin_len)) == NULL )
237 0 : return NULL;
238 196 : bin_data = (unsigned char *)PyBytes_AS_STRING(rv);
239 :
240 6310 : for( ; bin_len > 0 ; ascii_len--, ascii_data++ ) {
241 : /* XXX is it really best to add NULs if there's no more data */
242 6118 : this_ch = (ascii_len > 0) ? *ascii_data : 0;
243 6118 : if ( this_ch == '\n' || this_ch == '\r' || ascii_len <= 0) {
244 : /*
245 : ** Whitespace. Assume some spaces got eaten at
246 : ** end-of-line. (We check this later)
247 : */
248 680 : this_ch = 0;
249 : } else {
250 : /* Check the character for legality
251 : ** The 64 in stead of the expected 63 is because
252 : ** there are a few uuencodes out there that use
253 : ** '`' as zero instead of space.
254 : */
255 5438 : if ( this_ch < ' ' || this_ch > (' ' + 64)) {
256 4 : state = get_binascii_state(module);
257 4 : if (state == NULL) {
258 0 : return NULL;
259 : }
260 4 : PyErr_SetString(state->Error, "Illegal char");
261 4 : Py_DECREF(rv);
262 4 : return NULL;
263 : }
264 5434 : this_ch = (this_ch - ' ') & 077;
265 : }
266 : /*
267 : ** Shift it in on the low end, and see if there's
268 : ** a byte ready for output.
269 : */
270 6114 : leftchar = (leftchar << 6) | (this_ch);
271 6114 : leftbits += 6;
272 6114 : if ( leftbits >= 8 ) {
273 4560 : leftbits -= 8;
274 4560 : *bin_data++ = (leftchar >> leftbits) & 0xff;
275 4560 : leftchar &= ((1 << leftbits) - 1);
276 4560 : bin_len--;
277 : }
278 : }
279 : /*
280 : ** Finally, check that if there's anything left on the line
281 : ** that it's whitespace only.
282 : */
283 385 : while( ascii_len-- > 0 ) {
284 201 : this_ch = *ascii_data++;
285 : /* Extra '`' may be written as padding in some cases */
286 201 : if ( this_ch != ' ' && this_ch != ' '+64 &&
287 8 : this_ch != '\n' && this_ch != '\r' ) {
288 8 : state = get_binascii_state(module);
289 8 : if (state == NULL) {
290 0 : return NULL;
291 : }
292 8 : PyErr_SetString(state->Error, "Trailing garbage");
293 8 : Py_DECREF(rv);
294 8 : return NULL;
295 : }
296 : }
297 184 : return rv;
298 : }
299 :
300 : /*[clinic input]
301 : binascii.b2a_uu
302 :
303 : data: Py_buffer
304 : /
305 : *
306 : backtick: bool(accept={int}) = False
307 :
308 : Uuencode line of data.
309 : [clinic start generated code]*/
310 :
311 : static PyObject *
312 126 : binascii_b2a_uu_impl(PyObject *module, Py_buffer *data, int backtick)
313 : /*[clinic end generated code: output=b1b99de62d9bbeb8 input=b26bc8d32b6ed2f6]*/
314 : {
315 : unsigned char *ascii_data;
316 : const unsigned char *bin_data;
317 126 : int leftbits = 0;
318 : unsigned char this_ch;
319 126 : unsigned int leftchar = 0;
320 : binascii_state *state;
321 : Py_ssize_t bin_len, out_len;
322 : _PyBytesWriter writer;
323 :
324 126 : _PyBytesWriter_Init(&writer);
325 126 : bin_data = data->buf;
326 126 : bin_len = data->len;
327 126 : if ( bin_len > 45 ) {
328 : /* The 45 is a limit that appears in all uuencode's */
329 4 : state = get_binascii_state(module);
330 4 : if (state == NULL) {
331 0 : return NULL;
332 : }
333 4 : PyErr_SetString(state->Error, "At most 45 bytes at once");
334 4 : return NULL;
335 : }
336 :
337 : /* We're lazy and allocate to much (fixed up later) */
338 122 : out_len = 2 + (bin_len + 2) / 3 * 4;
339 122 : ascii_data = _PyBytesWriter_Alloc(&writer, out_len);
340 122 : if (ascii_data == NULL)
341 0 : return NULL;
342 :
343 : /* Store the length */
344 122 : if (backtick && !bin_len)
345 4 : *ascii_data++ = '`';
346 : else
347 118 : *ascii_data++ = ' ' + (unsigned char)bin_len;
348 :
349 3815 : for( ; bin_len > 0 || leftbits != 0 ; bin_len--, bin_data++ ) {
350 : /* Shift the data (or padding) into our buffer */
351 3693 : if ( bin_len > 0 ) /* Data */
352 3641 : leftchar = (leftchar << 8) | *bin_data;
353 : else /* Padding */
354 52 : leftchar <<= 8;
355 3693 : leftbits += 8;
356 :
357 : /* See if there are 6-bit groups ready */
358 8617 : while ( leftbits >= 6 ) {
359 4924 : this_ch = (leftchar >> (leftbits-6)) & 0x3f;
360 4924 : leftbits -= 6;
361 4924 : if (backtick && !this_ch)
362 43 : *ascii_data++ = '`';
363 : else
364 4881 : *ascii_data++ = this_ch + ' ';
365 : }
366 : }
367 122 : *ascii_data++ = '\n'; /* Append a courtesy newline */
368 :
369 122 : return _PyBytesWriter_Finish(&writer, ascii_data);
370 : }
371 :
372 : /*[clinic input]
373 : binascii.a2b_base64
374 :
375 : data: ascii_buffer
376 : /
377 : *
378 : strict_mode: bool(accept={int}) = False
379 :
380 : Decode a line of base64 data.
381 :
382 : strict_mode
383 : When set to True, bytes that are not part of the base64 standard are not allowed.
384 : The same applies to excess data after padding (= / ==).
385 : [clinic start generated code]*/
386 :
387 : static PyObject *
388 1003 : binascii_a2b_base64_impl(PyObject *module, Py_buffer *data, int strict_mode)
389 : /*[clinic end generated code: output=5409557788d4f975 input=3a30c4e3528317c6]*/
390 : {
391 1003 : assert(data->len >= 0);
392 :
393 1003 : const unsigned char *ascii_data = data->buf;
394 1003 : size_t ascii_len = data->len;
395 1003 : binascii_state *state = NULL;
396 1003 : char padding_started = 0;
397 :
398 : /* Allocate the buffer */
399 1003 : Py_ssize_t bin_len = ((ascii_len+3)/4)*3; /* Upper bound, corrected later */
400 : _PyBytesWriter writer;
401 1003 : _PyBytesWriter_Init(&writer);
402 1003 : unsigned char *bin_data = _PyBytesWriter_Alloc(&writer, bin_len);
403 1003 : if (bin_data == NULL)
404 0 : return NULL;
405 1003 : unsigned char *bin_data_start = bin_data;
406 :
407 1003 : if (strict_mode && ascii_len > 0 && ascii_data[0] == '=') {
408 12 : state = get_binascii_state(module);
409 12 : if (state) {
410 12 : PyErr_SetString(state->Error, "Leading padding not allowed");
411 : }
412 12 : goto error_end;
413 : }
414 :
415 991 : int quad_pos = 0;
416 991 : unsigned char leftchar = 0;
417 991 : int pads = 0;
418 375872 : for (size_t i = 0; i < ascii_len; i++) {
419 375442 : unsigned char this_ch = ascii_data[i];
420 :
421 : /* Check for pad sequences and ignore
422 : ** the invalid ones.
423 : */
424 375442 : if (this_ch == BASE64_PAD) {
425 1032 : padding_started = 1;
426 :
427 1032 : if (quad_pos >= 2 && quad_pos + ++pads >= 4) {
428 : /* A pad sequence means we should not parse more input.
429 : ** We've already interpreted the data from the quad at this point.
430 : ** in strict mode, an error should raise if there's excess data after the padding.
431 : */
432 504 : if (strict_mode && i + 1 < ascii_len) {
433 24 : state = get_binascii_state(module);
434 24 : if (state) {
435 24 : PyErr_SetString(state->Error, "Excess data after padding");
436 : }
437 24 : goto error_end;
438 : }
439 :
440 480 : goto done;
441 : }
442 528 : continue;
443 : }
444 :
445 374410 : this_ch = table_a2b_base64[this_ch];
446 374410 : if (this_ch >= 64) {
447 11831 : if (strict_mode) {
448 48 : state = get_binascii_state(module);
449 48 : if (state) {
450 48 : PyErr_SetString(state->Error, "Only base64 data is allowed");
451 : }
452 48 : goto error_end;
453 : }
454 11783 : continue;
455 : }
456 :
457 : // Characters that are not '=', in the middle of the padding, are not allowed
458 362579 : if (strict_mode && padding_started) {
459 9 : state = get_binascii_state(module);
460 9 : if (state) {
461 9 : PyErr_SetString(state->Error, "Discontinuous padding not allowed");
462 : }
463 9 : goto error_end;
464 : }
465 362570 : pads = 0;
466 :
467 362570 : switch (quad_pos) {
468 90921 : case 0:
469 90921 : quad_pos = 1;
470 90921 : leftchar = this_ch;
471 90921 : break;
472 90867 : case 1:
473 90867 : quad_pos = 2;
474 90867 : *bin_data++ = (leftchar << 2) | (this_ch >> 4);
475 90867 : leftchar = this_ch & 0x0f;
476 90867 : break;
477 90489 : case 2:
478 90489 : quad_pos = 3;
479 90489 : *bin_data++ = (leftchar << 4) | (this_ch >> 2);
480 90489 : leftchar = this_ch & 0x03;
481 90489 : break;
482 90293 : case 3:
483 90293 : quad_pos = 0;
484 90293 : *bin_data++ = (leftchar << 6) | (this_ch);
485 90293 : leftchar = 0;
486 90293 : break;
487 : }
488 374881 : }
489 :
490 430 : if (quad_pos != 0) {
491 85 : state = get_binascii_state(module);
492 85 : if (state == NULL) {
493 : /* error already set, from get_binascii_state */
494 85 : } else if (quad_pos == 1) {
495 : /*
496 : ** There is exactly one extra valid, non-padding, base64 character.
497 : ** This is an invalid length, as there is no possible input that
498 : ** could encoded into such a base64 string.
499 : */
500 44 : PyErr_Format(state->Error,
501 : "Invalid base64-encoded string: "
502 : "number of data characters (%zd) cannot be 1 more "
503 : "than a multiple of 4",
504 44 : (bin_data - bin_data_start) / 3 * 4 + 1);
505 : } else {
506 41 : PyErr_SetString(state->Error, "Incorrect padding");
507 : }
508 178 : error_end:
509 178 : _PyBytesWriter_Dealloc(&writer);
510 178 : return NULL;
511 : }
512 :
513 345 : done:
514 825 : return _PyBytesWriter_Finish(&writer, bin_data);
515 : }
516 :
517 :
518 : /*[clinic input]
519 : binascii.b2a_base64
520 :
521 : data: Py_buffer
522 : /
523 : *
524 : newline: bool(accept={int}) = True
525 :
526 : Base64-code line of data.
527 : [clinic start generated code]*/
528 :
529 : static PyObject *
530 4517 : binascii_b2a_base64_impl(PyObject *module, Py_buffer *data, int newline)
531 : /*[clinic end generated code: output=4ad62c8e8485d3b3 input=6083dac5777fa45d]*/
532 : {
533 : unsigned char *ascii_data;
534 : const unsigned char *bin_data;
535 4517 : int leftbits = 0;
536 : unsigned char this_ch;
537 4517 : unsigned int leftchar = 0;
538 : Py_ssize_t bin_len, out_len;
539 : _PyBytesWriter writer;
540 : binascii_state *state;
541 :
542 4517 : bin_data = data->buf;
543 4517 : bin_len = data->len;
544 4517 : _PyBytesWriter_Init(&writer);
545 :
546 4517 : assert(bin_len >= 0);
547 :
548 4517 : if ( bin_len > BASE64_MAXBIN ) {
549 0 : state = get_binascii_state(module);
550 0 : if (state == NULL) {
551 0 : return NULL;
552 : }
553 0 : PyErr_SetString(state->Error, "Too much data for base64 line");
554 0 : return NULL;
555 : }
556 :
557 : /* We're lazy and allocate too much (fixed up later).
558 : "+2" leaves room for up to two pad characters.
559 : Note that 'b' gets encoded as 'Yg==\n' (1 in, 5 out). */
560 4517 : out_len = bin_len*2 + 2;
561 4517 : if (newline)
562 4207 : out_len++;
563 4517 : ascii_data = _PyBytesWriter_Alloc(&writer, out_len);
564 4517 : if (ascii_data == NULL)
565 0 : return NULL;
566 :
567 246676 : for( ; bin_len > 0 ; bin_len--, bin_data++ ) {
568 : /* Shift the data into our buffer */
569 242159 : leftchar = (leftchar << 8) | *bin_data;
570 242159 : leftbits += 8;
571 :
572 : /* See if there are 6-bit groups ready */
573 564865 : while ( leftbits >= 6 ) {
574 322706 : this_ch = (leftchar >> (leftbits-6)) & 0x3f;
575 322706 : leftbits -= 6;
576 322706 : *ascii_data++ = table_b2a_base64[this_ch];
577 : }
578 : }
579 4517 : if ( leftbits == 2 ) {
580 184 : *ascii_data++ = table_b2a_base64[(leftchar&3) << 4];
581 184 : *ascii_data++ = BASE64_PAD;
582 184 : *ascii_data++ = BASE64_PAD;
583 4333 : } else if ( leftbits == 4 ) {
584 167 : *ascii_data++ = table_b2a_base64[(leftchar&0xf) << 2];
585 167 : *ascii_data++ = BASE64_PAD;
586 : }
587 4517 : if (newline)
588 4207 : *ascii_data++ = '\n'; /* Append a courtesy newline */
589 :
590 4517 : return _PyBytesWriter_Finish(&writer, ascii_data);
591 : }
592 :
593 :
594 : /*[clinic input]
595 : binascii.crc_hqx
596 :
597 : data: Py_buffer
598 : crc: unsigned_int(bitwise=True)
599 : /
600 :
601 : Compute CRC-CCITT incrementally.
602 : [clinic start generated code]*/
603 :
604 : static PyObject *
605 40 : binascii_crc_hqx_impl(PyObject *module, Py_buffer *data, unsigned int crc)
606 : /*[clinic end generated code: output=2fde213d0f547a98 input=56237755370a951c]*/
607 : {
608 : const unsigned char *bin_data;
609 : Py_ssize_t len;
610 :
611 40 : crc &= 0xffff;
612 40 : bin_data = data->buf;
613 40 : len = data->len;
614 :
615 344 : while(len-- > 0) {
616 304 : crc = ((crc<<8)&0xff00) ^ crctab_hqx[(crc>>8)^*bin_data++];
617 : }
618 :
619 40 : return PyLong_FromUnsignedLong(crc);
620 : }
621 :
622 : #ifndef USE_ZLIB_CRC32
623 : /* Crc - 32 BIT ANSI X3.66 CRC checksum files
624 : Also known as: ISO 3307
625 : **********************************************************************|
626 : * *|
627 : * Demonstration program to compute the 32-bit CRC used as the frame *|
628 : * check sequence in ADCCP (ANSI X3.66, also known as FIPS PUB 71 *|
629 : * and FED-STD-1003, the U.S. versions of CCITT's X.25 link-level *|
630 : * protocol). The 32-bit FCS was added via the Federal Register, *|
631 : * 1 June 1982, p.23798. I presume but don't know for certain that *|
632 : * this polynomial is or will be included in CCITT V.41, which *|
633 : * defines the 16-bit CRC (often called CRC-CCITT) polynomial. FIPS *|
634 : * PUB 78 says that the 32-bit FCS reduces otherwise undetected *|
635 : * errors by a factor of 10^-5 over 16-bit FCS. *|
636 : * *|
637 : **********************************************************************|
638 :
639 : Copyright (C) 1986 Gary S. Brown. You may use this program, or
640 : code or tables extracted from it, as desired without restriction.
641 :
642 : First, the polynomial itself and its table of feedback terms. The
643 : polynomial is
644 : X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0
645 : Note that we take it "backwards" and put the highest-order term in
646 : the lowest-order bit. The X^32 term is "implied"; the LSB is the
647 : X^31 term, etc. The X^0 term (usually shown as "+1") results in
648 : the MSB being 1.
649 :
650 : Note that the usual hardware shift register implementation, which
651 : is what we're using (we're merely optimizing it by doing eight-bit
652 : chunks at a time) shifts bits into the lowest-order term. In our
653 : implementation, that means shifting towards the right. Why do we
654 : do it this way? Because the calculated CRC must be transmitted in
655 : order from highest-order term to lowest-order term. UARTs transmit
656 : characters in order from LSB to MSB. By storing the CRC this way,
657 : we hand it to the UART in the order low-byte to high-byte; the UART
658 : sends each low-bit to hight-bit; and the result is transmission bit
659 : by bit from highest- to lowest-order term without requiring any bit
660 : shuffling on our part. Reception works similarly.
661 :
662 : The feedback terms table consists of 256, 32-bit entries. Notes:
663 :
664 : 1. The table can be generated at runtime if desired; code to do so
665 : is shown later. It might not be obvious, but the feedback
666 : terms simply represent the results of eight shift/xor opera-
667 : tions for all combinations of data and CRC register values.
668 :
669 : 2. The CRC accumulation logic is the same for all CRC polynomials,
670 : be they sixteen or thirty-two bits wide. You simply choose the
671 : appropriate table. Alternatively, because the table can be
672 : generated at runtime, you can start by generating the table for
673 : the polynomial in question and use exactly the same "updcrc",
674 : if your application needn't simultaneously handle two CRC
675 : polynomials. (Note, however, that XMODEM is strange.)
676 :
677 : 3. For 16-bit CRCs, the table entries need be only 16 bits wide;
678 : of course, 32-bit entries work OK if the high 16 bits are zero.
679 :
680 : 4. The values must be right-shifted by eight bits by the "updcrc"
681 : logic; the shift must be unsigned (bring in zeroes). On some
682 : hardware you could probably optimize the shift in assembler by
683 : using byte-swap instructions.
684 : ********************************************************************/
685 :
686 : static const unsigned int crc_32_tab[256] = {
687 : 0x00000000U, 0x77073096U, 0xee0e612cU, 0x990951baU, 0x076dc419U,
688 : 0x706af48fU, 0xe963a535U, 0x9e6495a3U, 0x0edb8832U, 0x79dcb8a4U,
689 : 0xe0d5e91eU, 0x97d2d988U, 0x09b64c2bU, 0x7eb17cbdU, 0xe7b82d07U,
690 : 0x90bf1d91U, 0x1db71064U, 0x6ab020f2U, 0xf3b97148U, 0x84be41deU,
691 : 0x1adad47dU, 0x6ddde4ebU, 0xf4d4b551U, 0x83d385c7U, 0x136c9856U,
692 : 0x646ba8c0U, 0xfd62f97aU, 0x8a65c9ecU, 0x14015c4fU, 0x63066cd9U,
693 : 0xfa0f3d63U, 0x8d080df5U, 0x3b6e20c8U, 0x4c69105eU, 0xd56041e4U,
694 : 0xa2677172U, 0x3c03e4d1U, 0x4b04d447U, 0xd20d85fdU, 0xa50ab56bU,
695 : 0x35b5a8faU, 0x42b2986cU, 0xdbbbc9d6U, 0xacbcf940U, 0x32d86ce3U,
696 : 0x45df5c75U, 0xdcd60dcfU, 0xabd13d59U, 0x26d930acU, 0x51de003aU,
697 : 0xc8d75180U, 0xbfd06116U, 0x21b4f4b5U, 0x56b3c423U, 0xcfba9599U,
698 : 0xb8bda50fU, 0x2802b89eU, 0x5f058808U, 0xc60cd9b2U, 0xb10be924U,
699 : 0x2f6f7c87U, 0x58684c11U, 0xc1611dabU, 0xb6662d3dU, 0x76dc4190U,
700 : 0x01db7106U, 0x98d220bcU, 0xefd5102aU, 0x71b18589U, 0x06b6b51fU,
701 : 0x9fbfe4a5U, 0xe8b8d433U, 0x7807c9a2U, 0x0f00f934U, 0x9609a88eU,
702 : 0xe10e9818U, 0x7f6a0dbbU, 0x086d3d2dU, 0x91646c97U, 0xe6635c01U,
703 : 0x6b6b51f4U, 0x1c6c6162U, 0x856530d8U, 0xf262004eU, 0x6c0695edU,
704 : 0x1b01a57bU, 0x8208f4c1U, 0xf50fc457U, 0x65b0d9c6U, 0x12b7e950U,
705 : 0x8bbeb8eaU, 0xfcb9887cU, 0x62dd1ddfU, 0x15da2d49U, 0x8cd37cf3U,
706 : 0xfbd44c65U, 0x4db26158U, 0x3ab551ceU, 0xa3bc0074U, 0xd4bb30e2U,
707 : 0x4adfa541U, 0x3dd895d7U, 0xa4d1c46dU, 0xd3d6f4fbU, 0x4369e96aU,
708 : 0x346ed9fcU, 0xad678846U, 0xda60b8d0U, 0x44042d73U, 0x33031de5U,
709 : 0xaa0a4c5fU, 0xdd0d7cc9U, 0x5005713cU, 0x270241aaU, 0xbe0b1010U,
710 : 0xc90c2086U, 0x5768b525U, 0x206f85b3U, 0xb966d409U, 0xce61e49fU,
711 : 0x5edef90eU, 0x29d9c998U, 0xb0d09822U, 0xc7d7a8b4U, 0x59b33d17U,
712 : 0x2eb40d81U, 0xb7bd5c3bU, 0xc0ba6cadU, 0xedb88320U, 0x9abfb3b6U,
713 : 0x03b6e20cU, 0x74b1d29aU, 0xead54739U, 0x9dd277afU, 0x04db2615U,
714 : 0x73dc1683U, 0xe3630b12U, 0x94643b84U, 0x0d6d6a3eU, 0x7a6a5aa8U,
715 : 0xe40ecf0bU, 0x9309ff9dU, 0x0a00ae27U, 0x7d079eb1U, 0xf00f9344U,
716 : 0x8708a3d2U, 0x1e01f268U, 0x6906c2feU, 0xf762575dU, 0x806567cbU,
717 : 0x196c3671U, 0x6e6b06e7U, 0xfed41b76U, 0x89d32be0U, 0x10da7a5aU,
718 : 0x67dd4accU, 0xf9b9df6fU, 0x8ebeeff9U, 0x17b7be43U, 0x60b08ed5U,
719 : 0xd6d6a3e8U, 0xa1d1937eU, 0x38d8c2c4U, 0x4fdff252U, 0xd1bb67f1U,
720 : 0xa6bc5767U, 0x3fb506ddU, 0x48b2364bU, 0xd80d2bdaU, 0xaf0a1b4cU,
721 : 0x36034af6U, 0x41047a60U, 0xdf60efc3U, 0xa867df55U, 0x316e8eefU,
722 : 0x4669be79U, 0xcb61b38cU, 0xbc66831aU, 0x256fd2a0U, 0x5268e236U,
723 : 0xcc0c7795U, 0xbb0b4703U, 0x220216b9U, 0x5505262fU, 0xc5ba3bbeU,
724 : 0xb2bd0b28U, 0x2bb45a92U, 0x5cb36a04U, 0xc2d7ffa7U, 0xb5d0cf31U,
725 : 0x2cd99e8bU, 0x5bdeae1dU, 0x9b64c2b0U, 0xec63f226U, 0x756aa39cU,
726 : 0x026d930aU, 0x9c0906a9U, 0xeb0e363fU, 0x72076785U, 0x05005713U,
727 : 0x95bf4a82U, 0xe2b87a14U, 0x7bb12baeU, 0x0cb61b38U, 0x92d28e9bU,
728 : 0xe5d5be0dU, 0x7cdcefb7U, 0x0bdbdf21U, 0x86d3d2d4U, 0xf1d4e242U,
729 : 0x68ddb3f8U, 0x1fda836eU, 0x81be16cdU, 0xf6b9265bU, 0x6fb077e1U,
730 : 0x18b74777U, 0x88085ae6U, 0xff0f6a70U, 0x66063bcaU, 0x11010b5cU,
731 : 0x8f659effU, 0xf862ae69U, 0x616bffd3U, 0x166ccf45U, 0xa00ae278U,
732 : 0xd70dd2eeU, 0x4e048354U, 0x3903b3c2U, 0xa7672661U, 0xd06016f7U,
733 : 0x4969474dU, 0x3e6e77dbU, 0xaed16a4aU, 0xd9d65adcU, 0x40df0b66U,
734 : 0x37d83bf0U, 0xa9bcae53U, 0xdebb9ec5U, 0x47b2cf7fU, 0x30b5ffe9U,
735 : 0xbdbdf21cU, 0xcabac28aU, 0x53b39330U, 0x24b4a3a6U, 0xbad03605U,
736 : 0xcdd70693U, 0x54de5729U, 0x23d967bfU, 0xb3667a2eU, 0xc4614ab8U,
737 : 0x5d681b02U, 0x2a6f2b94U, 0xb40bbe37U, 0xc30c8ea1U, 0x5a05df1bU,
738 : 0x2d02ef8dU
739 : };
740 :
741 : static unsigned int
742 : internal_crc32(const unsigned char *bin_data, Py_ssize_t len, unsigned int crc)
743 : { /* By Jim Ahlstrom; All rights transferred to CNRI */
744 : unsigned int result;
745 :
746 : crc = ~ crc;
747 : while (len-- > 0) {
748 : crc = crc_32_tab[(crc ^ *bin_data++) & 0xff] ^ (crc >> 8);
749 : /* Note: (crc >> 8) MUST zero fill on left */
750 : }
751 :
752 : result = (crc ^ 0xFFFFFFFF);
753 : return result & 0xffffffff;
754 : }
755 : #endif /* USE_ZLIB_CRC32 */
756 :
757 : /*[clinic input]
758 : binascii.crc32 -> unsigned_int
759 :
760 : data: Py_buffer
761 : crc: unsigned_int(bitwise=True) = 0
762 : /
763 :
764 : Compute CRC-32 incrementally.
765 : [clinic start generated code]*/
766 :
767 : static unsigned int
768 18 : binascii_crc32_impl(PyObject *module, Py_buffer *data, unsigned int crc)
769 : /*[clinic end generated code: output=52cf59056a78593b input=bbe340bc99d25aa8]*/
770 :
771 : #ifdef USE_ZLIB_CRC32
772 : /* This is the same as zlibmodule.c zlib_crc32_impl. It exists in two
773 : * modules for historical reasons. */
774 : {
775 : /* Releasing the GIL for very small buffers is inefficient
776 : and may lower performance */
777 18 : if (data->len > 1024*5) {
778 0 : unsigned char *buf = data->buf;
779 0 : Py_ssize_t len = data->len;
780 :
781 0 : Py_BEGIN_ALLOW_THREADS
782 : /* Avoid truncation of length for very large buffers. crc32() takes
783 : length as an unsigned int, which may be narrower than Py_ssize_t. */
784 0 : while ((size_t)len > UINT_MAX) {
785 0 : crc = crc32(crc, buf, UINT_MAX);
786 0 : buf += (size_t) UINT_MAX;
787 0 : len -= (size_t) UINT_MAX;
788 : }
789 0 : crc = crc32(crc, buf, (unsigned int)len);
790 0 : Py_END_ALLOW_THREADS
791 : } else {
792 18 : crc = crc32(crc, data->buf, (unsigned int)data->len);
793 : }
794 18 : return crc & 0xffffffff;
795 : }
796 : #else /* USE_ZLIB_CRC32 */
797 : {
798 : const unsigned char *bin_data = data->buf;
799 : Py_ssize_t len = data->len;
800 :
801 : /* Releasing the GIL for very small buffers is inefficient
802 : and may lower performance */
803 : if (len > 1024*5) {
804 : unsigned int result;
805 : Py_BEGIN_ALLOW_THREADS
806 : result = internal_crc32(bin_data, len, crc);
807 : Py_END_ALLOW_THREADS
808 : return result;
809 : } else {
810 : return internal_crc32(bin_data, len, crc);
811 : }
812 : }
813 : #endif /* USE_ZLIB_CRC32 */
814 :
815 : /*[clinic input]
816 : binascii.b2a_hex
817 :
818 : data: Py_buffer
819 : sep: object = NULL
820 : An optional single character or byte to separate hex bytes.
821 : bytes_per_sep: int = 1
822 : How many bytes between separators. Positive values count from the
823 : right, negative values count from the left.
824 :
825 : Hexadecimal representation of binary data.
826 :
827 : The return value is a bytes object. This function is also
828 : available as "hexlify()".
829 :
830 : Example:
831 : >>> binascii.b2a_hex(b'\xb9\x01\xef')
832 : b'b901ef'
833 : >>> binascii.hexlify(b'\xb9\x01\xef', ':')
834 : b'b9:01:ef'
835 : >>> binascii.b2a_hex(b'\xb9\x01\xef', b'_', 2)
836 : b'b9_01ef'
837 : [clinic start generated code]*/
838 :
839 : static PyObject *
840 31 : binascii_b2a_hex_impl(PyObject *module, Py_buffer *data, PyObject *sep,
841 : int bytes_per_sep)
842 : /*[clinic end generated code: output=a26937946a81d2c7 input=ec0ade6ba2e43543]*/
843 : {
844 31 : return _Py_strhex_bytes_with_sep((const char *)data->buf, data->len,
845 : sep, bytes_per_sep);
846 : }
847 :
848 : /*[clinic input]
849 : binascii.hexlify = binascii.b2a_hex
850 :
851 : Hexadecimal representation of binary data.
852 :
853 : The return value is a bytes object. This function is also
854 : available as "b2a_hex()".
855 : [clinic start generated code]*/
856 :
857 : static PyObject *
858 236 : binascii_hexlify_impl(PyObject *module, Py_buffer *data, PyObject *sep,
859 : int bytes_per_sep)
860 : /*[clinic end generated code: output=d12aa1b001b15199 input=bc317bd4e241f76b]*/
861 : {
862 236 : return _Py_strhex_bytes_with_sep((const char *)data->buf, data->len,
863 : sep, bytes_per_sep);
864 : }
865 :
866 : /*[clinic input]
867 : binascii.a2b_hex
868 :
869 : hexstr: ascii_buffer
870 : /
871 :
872 : Binary data of hexadecimal representation.
873 :
874 : hexstr must contain an even number of hex digits (upper or lower case).
875 : This function is also available as "unhexlify()".
876 : [clinic start generated code]*/
877 :
878 : static PyObject *
879 17285 : binascii_a2b_hex_impl(PyObject *module, Py_buffer *hexstr)
880 : /*[clinic end generated code: output=0cc1a139af0eeecb input=9e1e7f2f94db24fd]*/
881 : {
882 : const char* argbuf;
883 : Py_ssize_t arglen;
884 : PyObject *retval;
885 : char* retbuf;
886 : Py_ssize_t i, j;
887 : binascii_state *state;
888 :
889 17285 : argbuf = hexstr->buf;
890 17285 : arglen = hexstr->len;
891 :
892 17285 : assert(arglen >= 0);
893 :
894 : /* XXX What should we do about strings with an odd length? Should
895 : * we add an implicit leading zero, or a trailing zero? For now,
896 : * raise an exception.
897 : */
898 17285 : if (arglen % 2) {
899 6 : state = get_binascii_state(module);
900 6 : if (state == NULL) {
901 0 : return NULL;
902 : }
903 6 : PyErr_SetString(state->Error, "Odd-length string");
904 6 : return NULL;
905 : }
906 :
907 17279 : retval = PyBytes_FromStringAndSize(NULL, (arglen/2));
908 17279 : if (!retval)
909 0 : return NULL;
910 17279 : retbuf = PyBytes_AS_STRING(retval);
911 :
912 114141 : for (i=j=0; i < arglen; i += 2) {
913 96886 : unsigned int top = _PyLong_DigitValue[Py_CHARMASK(argbuf[i])];
914 96886 : unsigned int bot = _PyLong_DigitValue[Py_CHARMASK(argbuf[i+1])];
915 96886 : if (top >= 16 || bot >= 16) {
916 24 : state = get_binascii_state(module);
917 24 : if (state == NULL) {
918 0 : return NULL;
919 : }
920 24 : PyErr_SetString(state->Error,
921 : "Non-hexadecimal digit found");
922 24 : goto finally;
923 : }
924 96862 : retbuf[j++] = (top << 4) + bot;
925 : }
926 17255 : return retval;
927 :
928 24 : finally:
929 24 : Py_DECREF(retval);
930 24 : return NULL;
931 : }
932 :
933 : /*[clinic input]
934 : binascii.unhexlify = binascii.a2b_hex
935 :
936 : Binary data of hexadecimal representation.
937 :
938 : hexstr must contain an even number of hex digits (upper or lower case).
939 : [clinic start generated code]*/
940 :
941 : static PyObject *
942 17231 : binascii_unhexlify_impl(PyObject *module, Py_buffer *hexstr)
943 : /*[clinic end generated code: output=51a64c06c79629e3 input=dd8c012725f462da]*/
944 : {
945 17231 : return binascii_a2b_hex_impl(module, hexstr);
946 : }
947 :
948 : #define MAXLINESIZE 76
949 :
950 :
951 : /*[clinic input]
952 : binascii.a2b_qp
953 :
954 : data: ascii_buffer
955 : header: bool(accept={int}) = False
956 :
957 : Decode a string of qp-encoded data.
958 : [clinic start generated code]*/
959 :
960 : static PyObject *
961 158 : binascii_a2b_qp_impl(PyObject *module, Py_buffer *data, int header)
962 : /*[clinic end generated code: output=e99f7846cfb9bc53 input=bf6766fea76cce8f]*/
963 : {
964 : Py_ssize_t in, out;
965 : char ch;
966 : const unsigned char *ascii_data;
967 : unsigned char *odata;
968 158 : Py_ssize_t datalen = 0;
969 : PyObject *rv;
970 :
971 158 : ascii_data = data->buf;
972 158 : datalen = data->len;
973 :
974 : /* We allocate the output same size as input, this is overkill.
975 : */
976 158 : odata = (unsigned char *) PyMem_Calloc(1, datalen);
977 158 : if (odata == NULL) {
978 0 : PyErr_NoMemory();
979 0 : return NULL;
980 : }
981 :
982 158 : in = out = 0;
983 6538 : while (in < datalen) {
984 6384 : if (ascii_data[in] == '=') {
985 1184 : in++;
986 1184 : if (in >= datalen) break;
987 : /* Soft line breaks */
988 1180 : if ((ascii_data[in] == '\n') || (ascii_data[in] == '\r')) {
989 77 : if (ascii_data[in] != '\n') {
990 40 : while (in < datalen && ascii_data[in] != '\n') in++;
991 : }
992 77 : if (in < datalen) in++;
993 : }
994 1103 : else if (ascii_data[in] == '=') {
995 : /* broken case from broken python qp */
996 5 : odata[out++] = '=';
997 5 : in++;
998 : }
999 1098 : else if ((in + 1 < datalen) &&
1000 1090 : ((ascii_data[in] >= 'A' && ascii_data[in] <= 'F') ||
1001 288 : (ascii_data[in] >= 'a' && ascii_data[in] <= 'f') ||
1002 272 : (ascii_data[in] >= '0' && ascii_data[in] <= '9')) &&
1003 1086 : ((ascii_data[in+1] >= 'A' && ascii_data[in+1] <= 'F') ||
1004 768 : (ascii_data[in+1] >= 'a' && ascii_data[in+1] <= 'f') ||
1005 758 : (ascii_data[in+1] >= '0' && ascii_data[in+1] <= '9'))) {
1006 : /* hexval */
1007 1082 : ch = _PyLong_DigitValue[ascii_data[in]] << 4;
1008 1082 : in++;
1009 1082 : ch |= _PyLong_DigitValue[ascii_data[in]];
1010 1082 : in++;
1011 1082 : odata[out++] = ch;
1012 : }
1013 : else {
1014 16 : odata[out++] = '=';
1015 : }
1016 : }
1017 5200 : else if (header && ascii_data[in] == '_') {
1018 5 : odata[out++] = ' ';
1019 5 : in++;
1020 : }
1021 : else {
1022 5195 : odata[out] = ascii_data[in];
1023 5195 : in++;
1024 5195 : out++;
1025 : }
1026 : }
1027 158 : rv = PyBytes_FromStringAndSize((char *)odata, out);
1028 158 : PyMem_Free(odata);
1029 158 : return rv;
1030 : }
1031 :
1032 : static int
1033 810 : to_hex (unsigned char ch, unsigned char *s)
1034 : {
1035 810 : unsigned int uvalue = ch;
1036 :
1037 810 : s[1] = "0123456789ABCDEF"[uvalue % 16];
1038 810 : uvalue = (uvalue / 16);
1039 810 : s[0] = "0123456789ABCDEF"[uvalue % 16];
1040 810 : return 0;
1041 : }
1042 :
1043 : /* XXX: This is ridiculously complicated to be backward compatible
1044 : * (mostly) with the quopri module. It doesn't re-create the quopri
1045 : * module bug where text ending in CRLF has the CR encoded */
1046 :
1047 : /*[clinic input]
1048 : binascii.b2a_qp
1049 :
1050 : data: Py_buffer
1051 : quotetabs: bool(accept={int}) = False
1052 : istext: bool(accept={int}) = True
1053 : header: bool(accept={int}) = False
1054 :
1055 : Encode a string using quoted-printable encoding.
1056 :
1057 : On encoding, when istext is set, newlines are not encoded, and white
1058 : space at end of lines is. When istext is not set, \r and \n (CR/LF)
1059 : are both encoded. When quotetabs is set, space and tabs are encoded.
1060 : [clinic start generated code]*/
1061 :
1062 : static PyObject *
1063 234 : binascii_b2a_qp_impl(PyObject *module, Py_buffer *data, int quotetabs,
1064 : int istext, int header)
1065 : /*[clinic end generated code: output=e9884472ebb1a94c input=21fb7eea4a184ba6]*/
1066 : {
1067 : Py_ssize_t in, out;
1068 : const unsigned char *databuf;
1069 : unsigned char *odata;
1070 234 : Py_ssize_t datalen = 0, odatalen = 0;
1071 : PyObject *rv;
1072 234 : unsigned int linelen = 0;
1073 : unsigned char ch;
1074 234 : int crlf = 0;
1075 : const unsigned char *p;
1076 :
1077 234 : databuf = data->buf;
1078 234 : datalen = data->len;
1079 :
1080 : /* See if this string is using CRLF line ends */
1081 : /* XXX: this function has the side effect of converting all of
1082 : * the end of lines to be the same depending on this detection
1083 : * here */
1084 234 : p = (const unsigned char *) memchr(databuf, '\n', datalen);
1085 234 : if ((p != NULL) && (p > databuf) && (*(p-1) == '\r'))
1086 20 : crlf = 1;
1087 :
1088 : /* First, scan to see how many characters need to be encoded */
1089 234 : in = 0;
1090 4995 : while (in < datalen) {
1091 4761 : Py_ssize_t delta = 0;
1092 4761 : if ((databuf[in] > 126) ||
1093 4286 : (databuf[in] == '=') ||
1094 70 : (header && databuf[in] == '_') ||
1095 4163 : ((databuf[in] == '.') && (linelen == 0) &&
1096 20 : (in + 1 == datalen || databuf[in+1] == '\n' ||
1097 4151 : databuf[in+1] == '\r' || databuf[in+1] == 0)) ||
1098 239 : (!istext && ((databuf[in] == '\r') || (databuf[in] == '\n'))) ||
1099 4101 : ((databuf[in] == '\t' || databuf[in] == ' ') && (in + 1 == datalen)) ||
1100 4076 : ((databuf[in] < 33) &&
1101 583 : (databuf[in] != '\r') && (databuf[in] != '\n') &&
1102 296 : (quotetabs || ((databuf[in] != '\t') && (databuf[in] != ' ')))))
1103 : {
1104 791 : if ((linelen + 3) >= MAXLINESIZE) {
1105 13 : linelen = 0;
1106 13 : if (crlf)
1107 4 : delta += 3;
1108 : else
1109 9 : delta += 2;
1110 : }
1111 791 : linelen += 3;
1112 791 : delta += 3;
1113 791 : in++;
1114 : }
1115 : else {
1116 3970 : if (istext &&
1117 3775 : ((databuf[in] == '\n') ||
1118 3655 : ((in+1 < datalen) && (databuf[in] == '\r') &&
1119 37 : (databuf[in+1] == '\n'))))
1120 : {
1121 148 : linelen = 0;
1122 : /* Protect against whitespace on end of line */
1123 148 : if (in && ((databuf[in-1] == ' ') || (databuf[in-1] == '\t')))
1124 37 : delta += 2;
1125 148 : if (crlf)
1126 32 : delta += 2;
1127 : else
1128 116 : delta += 1;
1129 148 : if (databuf[in] == '\r')
1130 28 : in += 2;
1131 : else
1132 120 : in++;
1133 : }
1134 : else {
1135 3822 : if ((in + 1 != datalen) &&
1136 3720 : (databuf[in+1] != '\n') &&
1137 3662 : (linelen + 1) >= MAXLINESIZE) {
1138 11 : linelen = 0;
1139 11 : if (crlf)
1140 0 : delta += 3;
1141 : else
1142 11 : delta += 2;
1143 : }
1144 3822 : linelen++;
1145 3822 : delta++;
1146 3822 : in++;
1147 : }
1148 : }
1149 4761 : if (PY_SSIZE_T_MAX - delta < odatalen) {
1150 0 : PyErr_NoMemory();
1151 0 : return NULL;
1152 : }
1153 4761 : odatalen += delta;
1154 : }
1155 :
1156 : /* We allocate the output same size as input, this is overkill.
1157 : */
1158 234 : odata = (unsigned char *) PyMem_Calloc(1, odatalen);
1159 234 : if (odata == NULL) {
1160 0 : PyErr_NoMemory();
1161 0 : return NULL;
1162 : }
1163 :
1164 234 : in = out = linelen = 0;
1165 4995 : while (in < datalen) {
1166 4761 : if ((databuf[in] > 126) ||
1167 4286 : (databuf[in] == '=') ||
1168 70 : (header && databuf[in] == '_') ||
1169 4163 : ((databuf[in] == '.') && (linelen == 0) &&
1170 20 : (in + 1 == datalen || databuf[in+1] == '\n' ||
1171 4151 : databuf[in+1] == '\r' || databuf[in+1] == 0)) ||
1172 239 : (!istext && ((databuf[in] == '\r') || (databuf[in] == '\n'))) ||
1173 4101 : ((databuf[in] == '\t' || databuf[in] == ' ') && (in + 1 == datalen)) ||
1174 4076 : ((databuf[in] < 33) &&
1175 583 : (databuf[in] != '\r') && (databuf[in] != '\n') &&
1176 296 : (quotetabs || ((databuf[in] != '\t') && (databuf[in] != ' ')))))
1177 : {
1178 791 : if ((linelen + 3 )>= MAXLINESIZE) {
1179 13 : odata[out++] = '=';
1180 13 : if (crlf) odata[out++] = '\r';
1181 13 : odata[out++] = '\n';
1182 13 : linelen = 0;
1183 : }
1184 791 : odata[out++] = '=';
1185 791 : to_hex(databuf[in], &odata[out]);
1186 791 : out += 2;
1187 791 : in++;
1188 791 : linelen += 3;
1189 : }
1190 : else {
1191 3970 : if (istext &&
1192 3775 : ((databuf[in] == '\n') ||
1193 3655 : ((in+1 < datalen) && (databuf[in] == '\r') &&
1194 37 : (databuf[in+1] == '\n'))))
1195 : {
1196 148 : linelen = 0;
1197 : /* Protect against whitespace on end of line */
1198 148 : if (out && ((odata[out-1] == ' ') || (odata[out-1] == '\t'))) {
1199 19 : ch = odata[out-1];
1200 19 : odata[out-1] = '=';
1201 19 : to_hex(ch, &odata[out]);
1202 19 : out += 2;
1203 : }
1204 :
1205 148 : if (crlf) odata[out++] = '\r';
1206 148 : odata[out++] = '\n';
1207 148 : if (databuf[in] == '\r')
1208 28 : in += 2;
1209 : else
1210 120 : in++;
1211 : }
1212 : else {
1213 3822 : if ((in + 1 != datalen) &&
1214 3720 : (databuf[in+1] != '\n') &&
1215 3662 : (linelen + 1) >= MAXLINESIZE) {
1216 11 : odata[out++] = '=';
1217 11 : if (crlf) odata[out++] = '\r';
1218 11 : odata[out++] = '\n';
1219 11 : linelen = 0;
1220 : }
1221 3822 : linelen++;
1222 3822 : if (header && databuf[in] == ' ') {
1223 5 : odata[out++] = '_';
1224 5 : in++;
1225 : }
1226 : else {
1227 3817 : odata[out++] = databuf[in++];
1228 : }
1229 : }
1230 : }
1231 : }
1232 234 : rv = PyBytes_FromStringAndSize((char *)odata, out);
1233 234 : PyMem_Free(odata);
1234 234 : return rv;
1235 : }
1236 :
1237 : /* List of functions defined in the module */
1238 :
1239 : static struct PyMethodDef binascii_module_methods[] = {
1240 : BINASCII_A2B_UU_METHODDEF
1241 : BINASCII_B2A_UU_METHODDEF
1242 : BINASCII_A2B_BASE64_METHODDEF
1243 : BINASCII_B2A_BASE64_METHODDEF
1244 : BINASCII_A2B_HEX_METHODDEF
1245 : BINASCII_B2A_HEX_METHODDEF
1246 : BINASCII_HEXLIFY_METHODDEF
1247 : BINASCII_UNHEXLIFY_METHODDEF
1248 : BINASCII_CRC_HQX_METHODDEF
1249 : BINASCII_CRC32_METHODDEF
1250 : BINASCII_A2B_QP_METHODDEF
1251 : BINASCII_B2A_QP_METHODDEF
1252 : {NULL, NULL} /* sentinel */
1253 : };
1254 :
1255 :
1256 : /* Initialization function for the module (*must* be called PyInit_binascii) */
1257 : PyDoc_STRVAR(doc_binascii, "Conversion between binary data and ASCII");
1258 :
1259 : static int
1260 616 : binascii_exec(PyObject *module) {
1261 : int result;
1262 616 : binascii_state *state = PyModule_GetState(module);
1263 616 : if (state == NULL) {
1264 0 : return -1;
1265 : }
1266 :
1267 616 : state->Error = PyErr_NewException("binascii.Error", PyExc_ValueError, NULL);
1268 616 : if (state->Error == NULL) {
1269 0 : return -1;
1270 : }
1271 616 : Py_INCREF(state->Error);
1272 616 : result = PyModule_AddObject(module, "Error", state->Error);
1273 616 : if (result == -1) {
1274 0 : Py_DECREF(state->Error);
1275 0 : return -1;
1276 : }
1277 :
1278 616 : state->Incomplete = PyErr_NewException("binascii.Incomplete", NULL, NULL);
1279 616 : if (state->Incomplete == NULL) {
1280 0 : return -1;
1281 : }
1282 616 : Py_INCREF(state->Incomplete);
1283 616 : result = PyModule_AddObject(module, "Incomplete", state->Incomplete);
1284 616 : if (result == -1) {
1285 0 : Py_DECREF(state->Incomplete);
1286 0 : return -1;
1287 : }
1288 :
1289 616 : return 0;
1290 : }
1291 :
1292 : static PyModuleDef_Slot binascii_slots[] = {
1293 : {Py_mod_exec, binascii_exec},
1294 : {0, NULL}
1295 : };
1296 :
1297 : static int
1298 23702 : binascii_traverse(PyObject *module, visitproc visit, void *arg)
1299 : {
1300 23702 : binascii_state *state = get_binascii_state(module);
1301 23702 : Py_VISIT(state->Error);
1302 23702 : Py_VISIT(state->Incomplete);
1303 23702 : return 0;
1304 : }
1305 :
1306 : static int
1307 809 : binascii_clear(PyObject *module)
1308 : {
1309 809 : binascii_state *state = get_binascii_state(module);
1310 809 : Py_CLEAR(state->Error);
1311 809 : Py_CLEAR(state->Incomplete);
1312 809 : return 0;
1313 : }
1314 :
1315 : static void
1316 616 : binascii_free(void *module)
1317 : {
1318 616 : binascii_clear((PyObject *)module);
1319 616 : }
1320 :
1321 : static struct PyModuleDef binasciimodule = {
1322 : PyModuleDef_HEAD_INIT,
1323 : "binascii",
1324 : doc_binascii,
1325 : sizeof(binascii_state),
1326 : binascii_module_methods,
1327 : binascii_slots,
1328 : binascii_traverse,
1329 : binascii_clear,
1330 : binascii_free
1331 : };
1332 :
1333 : PyMODINIT_FUNC
1334 616 : PyInit_binascii(void)
1335 : {
1336 616 : return PyModuleDef_Init(&binasciimodule);
1337 : }
|