LCOV - code coverage report
Current view: top level - Objects - longobject.c (source / functions) Hit Total Coverage
Test: CPython lcov report Lines: 2407 2719 88.5 %
Date: 2022-07-07 18:19:46 Functions: 130 131 99.2 %

          Line data    Source code
       1             : /* Long (arbitrary precision) integer object implementation */
       2             : 
       3             : /* XXX The functional organization of this file is terrible */
       4             : 
       5             : #include "Python.h"
       6             : #include "pycore_bitutils.h"      // _Py_popcount32()
       7             : #include "pycore_initconfig.h"    // _PyStatus_OK()
       8             : #include "pycore_long.h"          // _Py_SmallInts
       9             : #include "pycore_object.h"        // _PyObject_InitVar()
      10             : #include "pycore_pystate.h"       // _Py_IsMainInterpreter()
      11             : #include "pycore_runtime.h"       // _PY_NSMALLPOSINTS
      12             : #include "pycore_structseq.h"     // _PyStructSequence_FiniType()
      13             : 
      14             : #include <ctype.h>
      15             : #include <float.h>
      16             : #include <stddef.h>
      17             : #include <stdlib.h>               // abs()
      18             : 
      19             : #include "clinic/longobject.c.h"
      20             : /*[clinic input]
      21             : class int "PyObject *" "&PyLong_Type"
      22             : [clinic start generated code]*/
      23             : /*[clinic end generated code: output=da39a3ee5e6b4b0d input=ec0275e3422a36e3]*/
      24             : 
      25             : /* Is this PyLong of size 1, 0 or -1? */
      26             : #define IS_MEDIUM_VALUE(x) (((size_t)Py_SIZE(x)) + 1U < 3U)
      27             : 
      28             : /* convert a PyLong of size 1, 0 or -1 to a C integer */
      29             : static inline stwodigits
      30   195845000 : medium_value(PyLongObject *x)
      31             : {
      32   195845000 :     assert(IS_MEDIUM_VALUE(x));
      33   195845000 :     return ((stwodigits)Py_SIZE(x)) * x->ob_digit[0];
      34             : }
      35             : 
      36             : #define IS_SMALL_INT(ival) (-_PY_NSMALLNEGINTS <= (ival) && (ival) < _PY_NSMALLPOSINTS)
      37             : #define IS_SMALL_UINT(ival) ((ival) < _PY_NSMALLPOSINTS)
      38             : 
      39             : static inline void
      40    10056600 : _Py_DECREF_INT(PyLongObject *op)
      41             : {
      42    10056600 :     assert(PyLong_CheckExact(op));
      43    10056600 :     _Py_DECREF_SPECIALIZED((PyObject *)op, (destructor)PyObject_Free);
      44    10056600 : }
      45             : 
      46             : static inline int
      47    97489700 : is_medium_int(stwodigits x)
      48             : {
      49             :     /* Take care that we are comparing unsigned values. */
      50    97489700 :     twodigits x_plus_mask = ((twodigits)x) + PyLong_MASK;
      51    97489700 :     return x_plus_mask < ((twodigits)PyLong_MASK) + PyLong_BASE;
      52             : }
      53             : 
      54             : static PyObject *
      55   235055000 : get_small_int(sdigit ival)
      56             : {
      57   235055000 :     assert(IS_SMALL_INT(ival));
      58   235055000 :     PyObject *v = (PyObject *)&_PyLong_SMALL_INTS[_PY_NSMALLNEGINTS + ival];
      59   235055000 :     Py_INCREF(v);
      60   235055000 :     return v;
      61             : }
      62             : 
      63             : static PyLongObject *
      64    13289400 : maybe_small_long(PyLongObject *v)
      65             : {
      66    13289400 :     if (v && IS_MEDIUM_VALUE(v)) {
      67     4700970 :         stwodigits ival = medium_value(v);
      68     4700970 :         if (IS_SMALL_INT(ival)) {
      69     2024760 :             _Py_DECREF_INT(v);
      70     2024760 :             return (PyLongObject *)get_small_int((sdigit)ival);
      71             :         }
      72             :     }
      73    11264600 :     return v;
      74             : }
      75             : 
      76             : /* For int multiplication, use the O(N**2) school algorithm unless
      77             :  * both operands contain more than KARATSUBA_CUTOFF digits (this
      78             :  * being an internal Python int digit, in base BASE).
      79             :  */
      80             : #define KARATSUBA_CUTOFF 70
      81             : #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
      82             : 
      83             : /* For exponentiation, use the binary left-to-right algorithm unless the
      84             :  ^ exponent contains more than HUGE_EXP_CUTOFF bits.  In that case, do
      85             :  * (no more than) EXP_WINDOW_SIZE bits at a time.  The potential drawback is
      86             :  * that a table of 2**(EXP_WINDOW_SIZE - 1) intermediate results is
      87             :  * precomputed.
      88             :  */
      89             : #define EXP_WINDOW_SIZE 5
      90             : #define EXP_TABLE_LEN (1 << (EXP_WINDOW_SIZE - 1))
      91             : /* Suppose the exponent has bit length e. All ways of doing this
      92             :  * need e squarings. The binary method also needs a multiply for
      93             :  * each bit set. In a k-ary method with window width w, a multiply
      94             :  * for each non-zero window, so at worst (and likely!)
      95             :  * ceiling(e/w). The k-ary sliding window method has the same
      96             :  * worst case, but the window slides so it can sometimes skip
      97             :  * over an all-zero window that the fixed-window method can't
      98             :  * exploit. In addition, the windowing methods need multiplies
      99             :  * to precompute a table of small powers.
     100             :  *
     101             :  * For the sliding window method with width 5, 16 precomputation
     102             :  * multiplies are needed. Assuming about half the exponent bits
     103             :  * are set, then, the binary method needs about e/2 extra mults
     104             :  * and the window method about 16 + e/5.
     105             :  *
     106             :  * The latter is smaller for e > 53 1/3. We don't have direct
     107             :  * access to the bit length, though, so call it 60, which is a
     108             :  * multiple of a long digit's max bit length (15 or 30 so far).
     109             :  */
     110             : #define HUGE_EXP_CUTOFF 60
     111             : 
     112             : #define SIGCHECK(PyTryBlock)                    \
     113             :     do {                                        \
     114             :         if (PyErr_CheckSignals()) PyTryBlock    \
     115             :     } while(0)
     116             : 
     117             : /* Normalize (remove leading zeros from) an int object.
     118             :    Doesn't attempt to free the storage--in most cases, due to the nature
     119             :    of the algorithms used, this could save at most be one word anyway. */
     120             : 
     121             : static PyLongObject *
     122    32512800 : long_normalize(PyLongObject *v)
     123             : {
     124    32512800 :     Py_ssize_t j = Py_ABS(Py_SIZE(v));
     125    32512800 :     Py_ssize_t i = j;
     126             : 
     127    49434100 :     while (i > 0 && v->ob_digit[i-1] == 0)
     128    16921300 :         --i;
     129    32512800 :     if (i != j) {
     130    13136000 :         Py_SET_SIZE(v, (Py_SIZE(v) < 0) ? -(i) : i);
     131             :     }
     132    32512800 :     return v;
     133             : }
     134             : 
     135             : /* Allocate a new int object with size digits.
     136             :    Return NULL and set exception if we run out of memory. */
     137             : 
     138             : #define MAX_LONG_DIGITS \
     139             :     ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit))
     140             : 
     141             : PyLongObject *
     142    89043300 : _PyLong_New(Py_ssize_t size)
     143             : {
     144             :     PyLongObject *result;
     145    89043300 :     if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
     146           0 :         PyErr_SetString(PyExc_OverflowError,
     147             :                         "too many digits in integer");
     148           0 :         return NULL;
     149             :     }
     150             :     /* Fast operations for single digit integers (including zero)
     151             :      * assume that there is always at least one digit present. */
     152    89043300 :     Py_ssize_t ndigits = size ? size : 1;
     153             :     /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) +
     154             :        sizeof(digit)*size.  Previous incarnations of this code used
     155             :        sizeof(PyVarObject) instead of the offsetof, but this risks being
     156             :        incorrect in the presence of padding between the PyVarObject header
     157             :        and the digits. */
     158    89043300 :     result = PyObject_Malloc(offsetof(PyLongObject, ob_digit) +
     159             :                              ndigits*sizeof(digit));
     160    89043300 :     if (!result) {
     161         837 :         PyErr_NoMemory();
     162         837 :         return NULL;
     163             :     }
     164    89042500 :     _PyObject_InitVar((PyVarObject*)result, &PyLong_Type, size);
     165    89042500 :     return result;
     166             : }
     167             : 
     168             : PyObject *
     169      867883 : _PyLong_Copy(PyLongObject *src)
     170             : {
     171             :     PyLongObject *result;
     172             :     Py_ssize_t i;
     173             : 
     174      867883 :     assert(src != NULL);
     175      867883 :     i = Py_SIZE(src);
     176      867883 :     if (i < 0)
     177      207322 :         i = -(i);
     178      867883 :     if (i < 2) {
     179      492520 :         stwodigits ival = medium_value(src);
     180      492520 :         if (IS_SMALL_INT(ival)) {
     181      456386 :             return get_small_int((sdigit)ival);
     182             :         }
     183             :     }
     184      411497 :     result = _PyLong_New(i);
     185      411497 :     if (result != NULL) {
     186      411497 :         Py_SET_SIZE(result, Py_SIZE(src));
     187     5146560 :         while (--i >= 0) {
     188     4735070 :             result->ob_digit[i] = src->ob_digit[i];
     189             :         }
     190             :     }
     191      411497 :     return (PyObject *)result;
     192             : }
     193             : 
     194             : static PyObject *
     195    66817500 : _PyLong_FromMedium(sdigit x)
     196             : {
     197    66817500 :     assert(!IS_SMALL_INT(x));
     198    66817500 :     assert(is_medium_int(x));
     199             :     /* We could use a freelist here */
     200    66817500 :     PyLongObject *v = PyObject_Malloc(sizeof(PyLongObject));
     201    66817500 :     if (v == NULL) {
     202           0 :         PyErr_NoMemory();
     203           0 :         return NULL;
     204             :     }
     205    66817500 :     Py_ssize_t sign = x < 0 ? -1: 1;
     206    66817500 :     digit abs_x = x < 0 ? -x : x;
     207    66817500 :     _PyObject_InitVar((PyVarObject*)v, &PyLong_Type, sign);
     208    66817500 :     v->ob_digit[0] = abs_x;
     209    66817500 :     return (PyObject*)v;
     210             : }
     211             : 
     212             : static PyObject *
     213     1050180 : _PyLong_FromLarge(stwodigits ival)
     214             : {
     215             :     twodigits abs_ival;
     216             :     int sign;
     217     1050180 :     assert(!is_medium_int(ival));
     218             : 
     219     1050180 :     if (ival < 0) {
     220             :         /* negate: can't write this as abs_ival = -ival since that
     221             :            invokes undefined behaviour when ival is LONG_MIN */
     222       35062 :         abs_ival = 0U-(twodigits)ival;
     223       35062 :         sign = -1;
     224             :     }
     225             :     else {
     226     1015120 :         abs_ival = (twodigits)ival;
     227     1015120 :         sign = 1;
     228             :     }
     229             :     /* Must be at least two digits */
     230     1050180 :     assert(abs_ival >> PyLong_SHIFT != 0);
     231     1050180 :     twodigits t = abs_ival >> (PyLong_SHIFT * 2);
     232     1050180 :     Py_ssize_t ndigits = 2;
     233     1050180 :     while (t) {
     234           0 :         ++ndigits;
     235           0 :         t >>= PyLong_SHIFT;
     236             :     }
     237     1050180 :     PyLongObject *v = _PyLong_New(ndigits);
     238     1050180 :     if (v != NULL) {
     239     1050180 :         digit *p = v->ob_digit;
     240     1050180 :         Py_SET_SIZE(v, ndigits * sign);
     241     1050180 :         t = abs_ival;
     242     3150540 :         while (t) {
     243     2100360 :             *p++ = Py_SAFE_DOWNCAST(
     244             :                 t & PyLong_MASK, twodigits, digit);
     245     2100360 :             t >>= PyLong_SHIFT;
     246             :         }
     247             :     }
     248     1050180 :     return (PyObject *)v;
     249             : }
     250             : 
     251             : /* Create a new int object from a C word-sized int */
     252             : static inline PyObject *
     253    93543600 : _PyLong_FromSTwoDigits(stwodigits x)
     254             : {
     255    93543600 :     if (IS_SMALL_INT(x)) {
     256    63921700 :         return get_small_int((sdigit)x);
     257             :     }
     258    29622000 :     assert(x != 0);
     259    29622000 :     if (is_medium_int(x)) {
     260    28571800 :         return _PyLong_FromMedium((sdigit)x);
     261             :     }
     262     1050180 :     return _PyLong_FromLarge(x);
     263             : }
     264             : 
     265             : int
     266    44940900 : _PyLong_AssignValue(PyObject **target, Py_ssize_t value)
     267             : {
     268    44940900 :     PyObject *old = *target;
     269    44940900 :     if (IS_SMALL_INT(value)) {
     270     7980030 :         *target = get_small_int(Py_SAFE_DOWNCAST(value, Py_ssize_t, sdigit));
     271     7980030 :         Py_XDECREF(old);
     272     7980030 :         return 0;
     273             :     }
     274    71819600 :     else if (old != NULL && PyLong_CheckExact(old) &&
     275    64309200 :              Py_REFCNT(old) == 1 && Py_SIZE(old) == 1 &&
     276    29323800 :              (size_t)value <= PyLong_MASK)
     277             :     {
     278             :         // Mutate in place if there are no other references the old
     279             :         // object.  This avoids an allocation in a common case.
     280             :         // Since the primary use-case is iterating over ranges, which
     281             :         // are typically positive, only do this optimization
     282             :         // for positive integers (for now).
     283    29323800 :         ((PyLongObject *)old)->ob_digit[0] =
     284    29323800 :             Py_SAFE_DOWNCAST(value, Py_ssize_t, digit);
     285    29323800 :         return 0;
     286             :     }
     287             :     else {
     288     7637080 :         *target = PyLong_FromSsize_t(value);
     289     7637080 :         Py_XDECREF(old);
     290     7637080 :         if (*target == NULL) {
     291           0 :             return -1;
     292             :         }
     293     7637080 :         return 0;
     294             :     }
     295             : }
     296             : 
     297             : /* If a freshly-allocated int is already shared, it must
     298             :    be a small integer, so negating it must go to PyLong_FromLong */
     299             : Py_LOCAL_INLINE(void)
     300      615954 : _PyLong_Negate(PyLongObject **x_p)
     301             : {
     302             :     PyLongObject *x;
     303             : 
     304      615954 :     x = (PyLongObject *)*x_p;
     305      615954 :     if (Py_REFCNT(x) == 1) {
     306      571301 :         Py_SET_SIZE(x, -Py_SIZE(x));
     307      571301 :         return;
     308             :     }
     309             : 
     310       44653 :     *x_p = (PyLongObject *)_PyLong_FromSTwoDigits(-medium_value(x));
     311       44653 :     Py_DECREF(x);
     312             : }
     313             : 
     314             : /* Create a new int object from a C long int */
     315             : 
     316             : PyObject *
     317   119362000 : PyLong_FromLong(long ival)
     318             : {
     319             :     PyLongObject *v;
     320             :     unsigned long abs_ival, t;
     321             :     int ndigits;
     322             : 
     323             :     /* Handle small and medium cases. */
     324   119362000 :     if (IS_SMALL_INT(ival)) {
     325    81882200 :         return get_small_int((sdigit)ival);
     326             :     }
     327    37479600 :     if (-(long)PyLong_MASK <= ival && ival <= (long)PyLong_MASK) {
     328    35619200 :         return _PyLong_FromMedium((sdigit)ival);
     329             :     }
     330             : 
     331             :     /* Count digits (at least two - smaller cases were handled above). */
     332     1860350 :     abs_ival = ival < 0 ? 0U-(unsigned long)ival : (unsigned long)ival;
     333             :     /* Do shift in two steps to avoid possible undefined behavior. */
     334     1860350 :     t = abs_ival >> PyLong_SHIFT >> PyLong_SHIFT;
     335     1860350 :     ndigits = 2;
     336     1968790 :     while (t) {
     337      108445 :         ++ndigits;
     338      108445 :         t >>= PyLong_SHIFT;
     339             :     }
     340             : 
     341             :     /* Construct output value. */
     342     1860350 :     v = _PyLong_New(ndigits);
     343     1860350 :     if (v != NULL) {
     344     1860350 :         digit *p = v->ob_digit;
     345     1860350 :         Py_SET_SIZE(v, ival < 0 ? -ndigits : ndigits);
     346     1860350 :         t = abs_ival;
     347     5689490 :         while (t) {
     348     3829140 :             *p++ = (digit)(t & PyLong_MASK);
     349     3829140 :             t >>= PyLong_SHIFT;
     350             :         }
     351             :     }
     352     1860350 :     return (PyObject *)v;
     353             : }
     354             : 
     355             : #define PYLONG_FROM_UINT(INT_TYPE, ival) \
     356             :     do { \
     357             :         if (IS_SMALL_UINT(ival)) { \
     358             :             return get_small_int((sdigit)(ival)); \
     359             :         } \
     360             :         /* Count the number of Python digits. */ \
     361             :         Py_ssize_t ndigits = 0; \
     362             :         INT_TYPE t = (ival); \
     363             :         while (t) { \
     364             :             ++ndigits; \
     365             :             t >>= PyLong_SHIFT; \
     366             :         } \
     367             :         PyLongObject *v = _PyLong_New(ndigits); \
     368             :         if (v == NULL) { \
     369             :             return NULL; \
     370             :         } \
     371             :         digit *p = v->ob_digit; \
     372             :         while ((ival)) { \
     373             :             *p++ = (digit)((ival) & PyLong_MASK); \
     374             :             (ival) >>= PyLong_SHIFT; \
     375             :         } \
     376             :         return (PyObject *)v; \
     377             :     } while(0)
     378             : 
     379             : /* Create a new int object from a C unsigned long int */
     380             : 
     381             : PyObject *
     382    23205400 : PyLong_FromUnsignedLong(unsigned long ival)
     383             : {
     384    77405300 :     PYLONG_FROM_UINT(unsigned long, ival);
     385             : }
     386             : 
     387             : /* Create a new int object from a C unsigned long long int. */
     388             : 
     389             : PyObject *
     390     1586160 : PyLong_FromUnsignedLongLong(unsigned long long ival)
     391             : {
     392     5195370 :     PYLONG_FROM_UINT(unsigned long long, ival);
     393             : }
     394             : 
     395             : /* Create a new int object from a C size_t. */
     396             : 
     397             : PyObject *
     398      344462 : PyLong_FromSize_t(size_t ival)
     399             : {
     400      637730 :     PYLONG_FROM_UINT(size_t, ival);
     401             : }
     402             : 
     403             : /* Create a new int object from a C double */
     404             : 
     405             : PyObject *
     406     9564700 : PyLong_FromDouble(double dval)
     407             : {
     408             :     /* Try to get out cheap if this fits in a long. When a finite value of real
     409             :      * floating type is converted to an integer type, the value is truncated
     410             :      * toward zero. If the value of the integral part cannot be represented by
     411             :      * the integer type, the behavior is undefined. Thus, we must check that
     412             :      * value is in range (LONG_MIN - 1, LONG_MAX + 1). If a long has more bits
     413             :      * of precision than a double, casting LONG_MIN - 1 to double may yield an
     414             :      * approximation, but LONG_MAX + 1 is a power of two and can be represented
     415             :      * as double exactly (assuming FLT_RADIX is 2 or 16), so for simplicity
     416             :      * check against [-(LONG_MAX + 1), LONG_MAX + 1).
     417             :      */
     418     9564700 :     const double int_max = (unsigned long)LONG_MAX + 1;
     419     9564700 :     if (-int_max < dval && dval < int_max) {
     420     9563190 :         return PyLong_FromLong((long)dval);
     421             :     }
     422             : 
     423             :     PyLongObject *v;
     424             :     double frac;
     425             :     int i, ndig, expo, neg;
     426        1507 :     neg = 0;
     427        1507 :     if (Py_IS_INFINITY(dval)) {
     428           9 :         PyErr_SetString(PyExc_OverflowError,
     429             :                         "cannot convert float infinity to integer");
     430           9 :         return NULL;
     431             :     }
     432        1498 :     if (Py_IS_NAN(dval)) {
     433           6 :         PyErr_SetString(PyExc_ValueError,
     434             :                         "cannot convert float NaN to integer");
     435           6 :         return NULL;
     436             :     }
     437        1492 :     if (dval < 0.0) {
     438         470 :         neg = 1;
     439         470 :         dval = -dval;
     440             :     }
     441        1492 :     frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
     442        1492 :     assert(expo > 0);
     443        1492 :     ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
     444        1492 :     v = _PyLong_New(ndig);
     445        1492 :     if (v == NULL)
     446           0 :         return NULL;
     447        1492 :     frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
     448       22869 :     for (i = ndig; --i >= 0; ) {
     449       21377 :         digit bits = (digit)frac;
     450       21377 :         v->ob_digit[i] = bits;
     451       21377 :         frac = frac - (double)bits;
     452       21377 :         frac = ldexp(frac, PyLong_SHIFT);
     453             :     }
     454        1492 :     if (neg) {
     455         470 :         Py_SET_SIZE(v, -(Py_SIZE(v)));
     456             :     }
     457        1492 :     return (PyObject *)v;
     458             : }
     459             : 
     460             : /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
     461             :  * anything about what happens when a signed integer operation overflows,
     462             :  * and some compilers think they're doing you a favor by being "clever"
     463             :  * then.  The bit pattern for the largest positive signed long is
     464             :  * (unsigned long)LONG_MAX, and for the smallest negative signed long
     465             :  * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
     466             :  * However, some other compilers warn about applying unary minus to an
     467             :  * unsigned operand.  Hence the weird "0-".
     468             :  */
     469             : #define PY_ABS_LONG_MIN         (0-(unsigned long)LONG_MIN)
     470             : #define PY_ABS_SSIZE_T_MIN      (0-(size_t)PY_SSIZE_T_MIN)
     471             : 
     472             : /* Get a C long int from an int object or any object that has an __index__
     473             :    method.
     474             : 
     475             :    On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
     476             :    the result.  Otherwise *overflow is 0.
     477             : 
     478             :    For other errors (e.g., TypeError), return -1 and set an error condition.
     479             :    In this case *overflow will be 0.
     480             : */
     481             : 
     482             : long
     483    79703400 : PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
     484             : {
     485             :     /* This version by Tim Peters */
     486             :     PyLongObject *v;
     487             :     unsigned long x, prev;
     488             :     long res;
     489             :     Py_ssize_t i;
     490             :     int sign;
     491    79703400 :     int do_decref = 0; /* if PyNumber_Index was called */
     492             : 
     493    79703400 :     *overflow = 0;
     494    79703400 :     if (vv == NULL) {
     495           0 :         PyErr_BadInternalCall();
     496           0 :         return -1;
     497             :     }
     498             : 
     499    79703400 :     if (PyLong_Check(vv)) {
     500    79398600 :         v = (PyLongObject *)vv;
     501             :     }
     502             :     else {
     503      304852 :         v = (PyLongObject *)_PyNumber_Index(vv);
     504      304852 :         if (v == NULL)
     505      304781 :             return -1;
     506          71 :         do_decref = 1;
     507             :     }
     508             : 
     509    79398600 :     res = -1;
     510    79398600 :     i = Py_SIZE(v);
     511             : 
     512    79398600 :     switch (i) {
     513      954628 :     case -1:
     514      954628 :         res = -(sdigit)v->ob_digit[0];
     515      954628 :         break;
     516     7633890 :     case 0:
     517     7633890 :         res = 0;
     518     7633890 :         break;
     519    70054000 :     case 1:
     520    70054000 :         res = v->ob_digit[0];
     521    70054000 :         break;
     522      756155 :     default:
     523      756155 :         sign = 1;
     524      756155 :         x = 0;
     525      756155 :         if (i < 0) {
     526      137504 :             sign = -1;
     527      137504 :             i = -(i);
     528             :         }
     529     2310320 :         while (--i >= 0) {
     530     1565150 :             prev = x;
     531     1565150 :             x = (x << PyLong_SHIFT) | v->ob_digit[i];
     532     1565150 :             if ((x >> PyLong_SHIFT) != prev) {
     533       10981 :                 *overflow = sign;
     534       10981 :                 goto exit;
     535             :             }
     536             :         }
     537             :         /* Haven't lost any bits, but casting to long requires extra
     538             :          * care (see comment above).
     539             :          */
     540      745174 :         if (x <= (unsigned long)LONG_MAX) {
     541      730840 :             res = (long)x * sign;
     542             :         }
     543       14334 :         else if (sign < 0 && x == PY_ABS_LONG_MIN) {
     544        3586 :             res = LONG_MIN;
     545             :         }
     546             :         else {
     547       10748 :             *overflow = sign;
     548             :             /* res is already set to -1 */
     549             :         }
     550             :     }
     551    79398600 :   exit:
     552    79398600 :     if (do_decref) {
     553          71 :         Py_DECREF(v);
     554             :     }
     555    79398600 :     return res;
     556             : }
     557             : 
     558             : /* Get a C long int from an int object or any object that has an __index__
     559             :    method.  Return -1 and set an error if overflow occurs. */
     560             : 
     561             : long
     562    42908100 : PyLong_AsLong(PyObject *obj)
     563             : {
     564             :     int overflow;
     565    42908100 :     long result = PyLong_AsLongAndOverflow(obj, &overflow);
     566    42908100 :     if (overflow) {
     567             :         /* XXX: could be cute and give a different
     568             :            message for overflow == -1 */
     569       19578 :         PyErr_SetString(PyExc_OverflowError,
     570             :                         "Python int too large to convert to C long");
     571             :     }
     572    42908100 :     return result;
     573             : }
     574             : 
     575             : /* Get a C int from an int object or any object that has an __index__
     576             :    method.  Return -1 and set an error if overflow occurs. */
     577             : 
     578             : int
     579    26820400 : _PyLong_AsInt(PyObject *obj)
     580             : {
     581             :     int overflow;
     582    26820400 :     long result = PyLong_AsLongAndOverflow(obj, &overflow);
     583    26820400 :     if (overflow || result > INT_MAX || result < INT_MIN) {
     584             :         /* XXX: could be cute and give a different
     585             :            message for overflow == -1 */
     586          30 :         PyErr_SetString(PyExc_OverflowError,
     587             :                         "Python int too large to convert to C int");
     588          30 :         return -1;
     589             :     }
     590    26820400 :     return (int)result;
     591             : }
     592             : 
     593             : /* Get a Py_ssize_t from an int object.
     594             :    Returns -1 and sets an error condition if overflow occurs. */
     595             : 
     596             : Py_ssize_t
     597   201340000 : PyLong_AsSsize_t(PyObject *vv) {
     598             :     PyLongObject *v;
     599             :     size_t x, prev;
     600             :     Py_ssize_t i;
     601             :     int sign;
     602             : 
     603   201340000 :     if (vv == NULL) {
     604           0 :         PyErr_BadInternalCall();
     605           0 :         return -1;
     606             :     }
     607   201340000 :     if (!PyLong_Check(vv)) {
     608          24 :         PyErr_SetString(PyExc_TypeError, "an integer is required");
     609          24 :         return -1;
     610             :     }
     611             : 
     612   201340000 :     v = (PyLongObject *)vv;
     613   201340000 :     i = Py_SIZE(v);
     614   201340000 :     switch (i) {
     615    16181400 :     case -1: return -(sdigit)v->ob_digit[0];
     616    34510000 :     case 0: return 0;
     617   149585000 :     case 1: return v->ob_digit[0];
     618             :     }
     619     1062830 :     sign = 1;
     620     1062830 :     x = 0;
     621     1062830 :     if (i < 0) {
     622      343257 :         sign = -1;
     623      343257 :         i = -(i);
     624             :     }
     625     4163800 :     while (--i >= 0) {
     626     3103590 :         prev = x;
     627     3103590 :         x = (x << PyLong_SHIFT) | v->ob_digit[i];
     628     3103590 :         if ((x >> PyLong_SHIFT) != prev)
     629        2616 :             goto overflow;
     630             :     }
     631             :     /* Haven't lost any bits, but casting to a signed type requires
     632             :      * extra care (see comment above).
     633             :      */
     634     1060210 :     if (x <= (size_t)PY_SSIZE_T_MAX) {
     635     1059150 :         return (Py_ssize_t)x * sign;
     636             :     }
     637        1063 :     else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
     638          24 :         return PY_SSIZE_T_MIN;
     639             :     }
     640             :     /* else overflow */
     641             : 
     642        1039 :   overflow:
     643        3655 :     PyErr_SetString(PyExc_OverflowError,
     644             :                     "Python int too large to convert to C ssize_t");
     645        3655 :     return -1;
     646             : }
     647             : 
     648             : /* Get a C unsigned long int from an int object.
     649             :    Returns -1 and sets an error condition if overflow occurs. */
     650             : 
     651             : unsigned long
     652     5063240 : PyLong_AsUnsignedLong(PyObject *vv)
     653             : {
     654             :     PyLongObject *v;
     655             :     unsigned long x, prev;
     656             :     Py_ssize_t i;
     657             : 
     658     5063240 :     if (vv == NULL) {
     659           0 :         PyErr_BadInternalCall();
     660           0 :         return (unsigned long)-1;
     661             :     }
     662     5063240 :     if (!PyLong_Check(vv)) {
     663          12 :         PyErr_SetString(PyExc_TypeError, "an integer is required");
     664          12 :         return (unsigned long)-1;
     665             :     }
     666             : 
     667     5063230 :     v = (PyLongObject *)vv;
     668     5063230 :     i = Py_SIZE(v);
     669     5063230 :     x = 0;
     670     5063230 :     if (i < 0) {
     671        3145 :         PyErr_SetString(PyExc_OverflowError,
     672             :                         "can't convert negative value to unsigned int");
     673        3145 :         return (unsigned long) -1;
     674             :     }
     675     5060080 :     switch (i) {
     676      717796 :     case 0: return 0;
     677     4060910 :     case 1: return v->ob_digit[0];
     678             :     }
     679      897310 :     while (--i >= 0) {
     680      616022 :         prev = x;
     681      616022 :         x = (x << PyLong_SHIFT) | v->ob_digit[i];
     682      616022 :         if ((x >> PyLong_SHIFT) != prev) {
     683          84 :             PyErr_SetString(PyExc_OverflowError,
     684             :                             "Python int too large to convert "
     685             :                             "to C unsigned long");
     686          84 :             return (unsigned long) -1;
     687             :         }
     688             :     }
     689      281288 :     return x;
     690             : }
     691             : 
     692             : /* Get a C size_t from an int object. Returns (size_t)-1 and sets
     693             :    an error condition if overflow occurs. */
     694             : 
     695             : size_t
     696       27316 : PyLong_AsSize_t(PyObject *vv)
     697             : {
     698             :     PyLongObject *v;
     699             :     size_t x, prev;
     700             :     Py_ssize_t i;
     701             : 
     702       27316 :     if (vv == NULL) {
     703           0 :         PyErr_BadInternalCall();
     704           0 :         return (size_t) -1;
     705             :     }
     706       27316 :     if (!PyLong_Check(vv)) {
     707           1 :         PyErr_SetString(PyExc_TypeError, "an integer is required");
     708           1 :         return (size_t)-1;
     709             :     }
     710             : 
     711       27315 :     v = (PyLongObject *)vv;
     712       27315 :     i = Py_SIZE(v);
     713       27315 :     x = 0;
     714       27315 :     if (i < 0) {
     715         805 :         PyErr_SetString(PyExc_OverflowError,
     716             :                    "can't convert negative value to size_t");
     717         805 :         return (size_t) -1;
     718             :     }
     719       26510 :     switch (i) {
     720          24 :     case 0: return 0;
     721        3207 :     case 1: return v->ob_digit[0];
     722             :     }
     723       91338 :     while (--i >= 0) {
     724       68084 :         prev = x;
     725       68084 :         x = (x << PyLong_SHIFT) | v->ob_digit[i];
     726       68084 :         if ((x >> PyLong_SHIFT) != prev) {
     727          25 :             PyErr_SetString(PyExc_OverflowError,
     728             :                 "Python int too large to convert to C size_t");
     729          25 :             return (size_t) -1;
     730             :         }
     731             :     }
     732       23254 :     return x;
     733             : }
     734             : 
     735             : /* Get a C unsigned long int from an int object, ignoring the high bits.
     736             :    Returns -1 and sets an error condition if an error occurs. */
     737             : 
     738             : static unsigned long
     739      274898 : _PyLong_AsUnsignedLongMask(PyObject *vv)
     740             : {
     741             :     PyLongObject *v;
     742             :     unsigned long x;
     743             :     Py_ssize_t i;
     744             :     int sign;
     745             : 
     746      274898 :     if (vv == NULL || !PyLong_Check(vv)) {
     747           0 :         PyErr_BadInternalCall();
     748           0 :         return (unsigned long) -1;
     749             :     }
     750      274898 :     v = (PyLongObject *)vv;
     751      274898 :     i = Py_SIZE(v);
     752      274898 :     switch (i) {
     753       17835 :     case 0: return 0;
     754      147785 :     case 1: return v->ob_digit[0];
     755             :     }
     756      109278 :     sign = 1;
     757      109278 :     x = 0;
     758      109278 :     if (i < 0) {
     759         250 :         sign = -1;
     760         250 :         i = -i;
     761             :     }
     762      327637 :     while (--i >= 0) {
     763      218359 :         x = (x << PyLong_SHIFT) | v->ob_digit[i];
     764             :     }
     765      109278 :     return x * sign;
     766             : }
     767             : 
     768             : unsigned long
     769      277874 : PyLong_AsUnsignedLongMask(PyObject *op)
     770             : {
     771             :     PyLongObject *lo;
     772             :     unsigned long val;
     773             : 
     774      277874 :     if (op == NULL) {
     775           0 :         PyErr_BadInternalCall();
     776           0 :         return (unsigned long)-1;
     777             :     }
     778             : 
     779      277874 :     if (PyLong_Check(op)) {
     780      274881 :         return _PyLong_AsUnsignedLongMask(op);
     781             :     }
     782             : 
     783        2993 :     lo = (PyLongObject *)_PyNumber_Index(op);
     784        2993 :     if (lo == NULL)
     785        2976 :         return (unsigned long)-1;
     786             : 
     787          17 :     val = _PyLong_AsUnsignedLongMask((PyObject *)lo);
     788          17 :     Py_DECREF(lo);
     789          17 :     return val;
     790             : }
     791             : 
     792             : int
     793     3164710 : _PyLong_Sign(PyObject *vv)
     794             : {
     795     3164710 :     PyLongObject *v = (PyLongObject *)vv;
     796             : 
     797     3164710 :     assert(v != NULL);
     798     3164710 :     assert(PyLong_Check(v));
     799             : 
     800     3164710 :     return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
     801             : }
     802             : 
     803             : static int
     804     9573080 : bit_length_digit(digit x)
     805             : {
     806             :     // digit can be larger than unsigned long, but only PyLong_SHIFT bits
     807             :     // of it will be ever used.
     808             :     static_assert(PyLong_SHIFT <= sizeof(unsigned long) * 8,
     809             :                   "digit is larger than unsigned long");
     810     9573080 :     return _Py_bit_length((unsigned long)x);
     811             : }
     812             : 
     813             : size_t
     814     1757250 : _PyLong_NumBits(PyObject *vv)
     815             : {
     816     1757250 :     PyLongObject *v = (PyLongObject *)vv;
     817     1757250 :     size_t result = 0;
     818             :     Py_ssize_t ndigits;
     819             :     int msd_bits;
     820             : 
     821     1757250 :     assert(v != NULL);
     822     1757250 :     assert(PyLong_Check(v));
     823     1757250 :     ndigits = Py_ABS(Py_SIZE(v));
     824     1757250 :     assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
     825     1757250 :     if (ndigits > 0) {
     826      514040 :         digit msd = v->ob_digit[ndigits - 1];
     827      514040 :         if ((size_t)(ndigits - 1) > SIZE_MAX / (size_t)PyLong_SHIFT)
     828           0 :             goto Overflow;
     829      514040 :         result = (size_t)(ndigits - 1) * (size_t)PyLong_SHIFT;
     830      514040 :         msd_bits = bit_length_digit(msd);
     831      514040 :         if (SIZE_MAX - msd_bits < result)
     832           0 :             goto Overflow;
     833      514040 :         result += msd_bits;
     834             :     }
     835     1757250 :     return result;
     836             : 
     837           0 :   Overflow:
     838           0 :     PyErr_SetString(PyExc_OverflowError, "int has too many bits "
     839             :                     "to express in a platform size_t");
     840           0 :     return (size_t)-1;
     841             : }
     842             : 
     843             : PyObject *
     844     1467730 : _PyLong_FromByteArray(const unsigned char* bytes, size_t n,
     845             :                       int little_endian, int is_signed)
     846             : {
     847             :     const unsigned char* pstartbyte;    /* LSB of bytes */
     848             :     int incr;                           /* direction to move pstartbyte */
     849             :     const unsigned char* pendbyte;      /* MSB of bytes */
     850             :     size_t numsignificantbytes;         /* number of bytes that matter */
     851             :     Py_ssize_t ndigits;                 /* number of Python int digits */
     852             :     PyLongObject* v;                    /* result */
     853     1467730 :     Py_ssize_t idigit = 0;              /* next free index in v->ob_digit */
     854             : 
     855     1467730 :     if (n == 0)
     856          12 :         return PyLong_FromLong(0L);
     857             : 
     858     1467720 :     if (little_endian) {
     859     1300070 :         pstartbyte = bytes;
     860     1300070 :         pendbyte = bytes + n - 1;
     861     1300070 :         incr = 1;
     862             :     }
     863             :     else {
     864      167647 :         pstartbyte = bytes + n - 1;
     865      167647 :         pendbyte = bytes;
     866      167647 :         incr = -1;
     867             :     }
     868             : 
     869     1467720 :     if (is_signed)
     870        9057 :         is_signed = *pendbyte >= 0x80;
     871             : 
     872             :     /* Compute numsignificantbytes.  This consists of finding the most
     873             :        significant byte.  Leading 0 bytes are insignificant if the number
     874             :        is positive, and leading 0xff bytes if negative. */
     875             :     {
     876             :         size_t i;
     877     1467720 :         const unsigned char* p = pendbyte;
     878     1467720 :         const int pincr = -incr;  /* search MSB to LSB */
     879     1467720 :         const unsigned char insignificant = is_signed ? 0xff : 0x00;
     880             : 
     881     4196180 :         for (i = 0; i < n; ++i, p += pincr) {
     882     3978750 :             if (*p != insignificant)
     883     1250290 :                 break;
     884             :         }
     885     1467720 :         numsignificantbytes = n - i;
     886             :         /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
     887             :            actually has 2 significant bytes.  OTOH, 0xff0001 ==
     888             :            -0x00ffff, so we wouldn't *need* to bump it there; but we
     889             :            do for 0xffff = -0x0001.  To be safe without bothering to
     890             :            check every case, bump it regardless. */
     891     1467720 :         if (is_signed && numsignificantbytes < n)
     892         781 :             ++numsignificantbytes;
     893             :     }
     894             : 
     895             :     /* How many Python int digits do we need?  We have
     896             :        8*numsignificantbytes bits, and each Python int digit has
     897             :        PyLong_SHIFT bits, so it's the ceiling of the quotient. */
     898             :     /* catch overflow before it happens */
     899     1467720 :     if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
     900           0 :         PyErr_SetString(PyExc_OverflowError,
     901             :                         "byte array too long to convert to int");
     902           0 :         return NULL;
     903             :     }
     904     1467720 :     ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
     905     1467720 :     v = _PyLong_New(ndigits);
     906     1467720 :     if (v == NULL)
     907           0 :         return NULL;
     908             : 
     909             :     /* Copy the bits over.  The tricky parts are computing 2's-comp on
     910             :        the fly for signed numbers, and dealing with the mismatch between
     911             :        8-bit bytes and (probably) 15-bit Python digits.*/
     912             :     {
     913             :         size_t i;
     914     1467720 :         twodigits carry = 1;                    /* for 2's-comp calculation */
     915     1467720 :         twodigits accum = 0;                    /* sliding register */
     916     1467720 :         unsigned int accumbits = 0;             /* number of bits in accum */
     917     1467720 :         const unsigned char* p = pstartbyte;
     918             : 
     919    61088700 :         for (i = 0; i < numsignificantbytes; ++i, p += incr) {
     920    59621000 :             twodigits thisbyte = *p;
     921             :             /* Compute correction for 2's comp, if needed. */
     922    59621000 :             if (is_signed) {
     923      972330 :                 thisbyte = (0xff ^ thisbyte) + carry;
     924      972330 :                 carry = thisbyte >> 8;
     925      972330 :                 thisbyte &= 0xff;
     926             :             }
     927             :             /* Because we're going LSB to MSB, thisbyte is
     928             :                more significant than what's already in accum,
     929             :                so needs to be prepended to accum. */
     930    59621000 :             accum |= thisbyte << accumbits;
     931    59621000 :             accumbits += 8;
     932    59621000 :             if (accumbits >= PyLong_SHIFT) {
     933             :                 /* There's enough to fill a Python digit. */
     934    15353300 :                 assert(idigit < ndigits);
     935    15353300 :                 v->ob_digit[idigit] = (digit)(accum & PyLong_MASK);
     936    15353300 :                 ++idigit;
     937    15353300 :                 accum >>= PyLong_SHIFT;
     938    15353300 :                 accumbits -= PyLong_SHIFT;
     939    15353300 :                 assert(accumbits < PyLong_SHIFT);
     940             :             }
     941             :         }
     942     1467720 :         assert(accumbits < PyLong_SHIFT);
     943     1467720 :         if (accumbits) {
     944     1238920 :             assert(idigit < ndigits);
     945     1238920 :             v->ob_digit[idigit] = (digit)accum;
     946     1238920 :             ++idigit;
     947             :         }
     948             :     }
     949             : 
     950     1467720 :     Py_SET_SIZE(v, is_signed ? -idigit : idigit);
     951     1467720 :     return (PyObject *)maybe_small_long(long_normalize(v));
     952             : }
     953             : 
     954             : int
     955      461498 : _PyLong_AsByteArray(PyLongObject* v,
     956             :                     unsigned char* bytes, size_t n,
     957             :                     int little_endian, int is_signed)
     958             : {
     959             :     Py_ssize_t i;               /* index into v->ob_digit */
     960             :     Py_ssize_t ndigits;         /* |v->ob_size| */
     961             :     twodigits accum;            /* sliding register */
     962             :     unsigned int accumbits;     /* # bits in accum */
     963             :     int do_twos_comp;           /* store 2's-comp?  is_signed and v < 0 */
     964             :     digit carry;                /* for computing 2's-comp */
     965             :     size_t j;                   /* # bytes filled */
     966             :     unsigned char* p;           /* pointer to next byte in bytes */
     967             :     int pincr;                  /* direction to move p */
     968             : 
     969      461498 :     assert(v != NULL && PyLong_Check(v));
     970             : 
     971      461498 :     if (Py_SIZE(v) < 0) {
     972       36797 :         ndigits = -(Py_SIZE(v));
     973       36797 :         if (!is_signed) {
     974        2420 :             PyErr_SetString(PyExc_OverflowError,
     975             :                             "can't convert negative int to unsigned");
     976        2420 :             return -1;
     977             :         }
     978       34377 :         do_twos_comp = 1;
     979             :     }
     980             :     else {
     981      424701 :         ndigits = Py_SIZE(v);
     982      424701 :         do_twos_comp = 0;
     983             :     }
     984             : 
     985      459078 :     if (little_endian) {
     986      234293 :         p = bytes;
     987      234293 :         pincr = 1;
     988             :     }
     989             :     else {
     990      224785 :         p = bytes + n - 1;
     991      224785 :         pincr = -1;
     992             :     }
     993             : 
     994             :     /* Copy over all the Python digits.
     995             :        It's crucial that every Python digit except for the MSD contribute
     996             :        exactly PyLong_SHIFT bits to the total, so first assert that the int is
     997             :        normalized. */
     998      459078 :     assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
     999      459078 :     j = 0;
    1000      459078 :     accum = 0;
    1001      459078 :     accumbits = 0;
    1002      459078 :     carry = do_twos_comp ? 1 : 0;
    1003    12975100 :     for (i = 0; i < ndigits; ++i) {
    1004    12516000 :         digit thisdigit = v->ob_digit[i];
    1005    12516000 :         if (do_twos_comp) {
    1006      309166 :             thisdigit = (thisdigit ^ PyLong_MASK) + carry;
    1007      309166 :             carry = thisdigit >> PyLong_SHIFT;
    1008      309166 :             thisdigit &= PyLong_MASK;
    1009             :         }
    1010             :         /* Because we're going LSB to MSB, thisdigit is more
    1011             :            significant than what's already in accum, so needs to be
    1012             :            prepended to accum. */
    1013    12516000 :         accum |= (twodigits)thisdigit << accumbits;
    1014             : 
    1015             :         /* The most-significant digit may be (probably is) at least
    1016             :            partly empty. */
    1017    12516000 :         if (i == ndigits - 1) {
    1018             :             /* Count # of sign bits -- they needn't be stored,
    1019             :              * although for signed conversion we need later to
    1020             :              * make sure at least one sign bit gets stored. */
    1021      449692 :             digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
    1022     4984360 :             while (s != 0) {
    1023     4534660 :                 s >>= 1;
    1024     4534660 :                 accumbits++;
    1025             :             }
    1026             :         }
    1027             :         else
    1028    12066300 :             accumbits += PyLong_SHIFT;
    1029             : 
    1030             :         /* Store as many bytes as possible. */
    1031    58125700 :         while (accumbits >= 8) {
    1032    45609700 :             if (j >= n)
    1033          10 :                 goto Overflow;
    1034    45609700 :             ++j;
    1035    45609700 :             *p = (unsigned char)(accum & 0xff);
    1036    45609700 :             p += pincr;
    1037    45609700 :             accumbits -= 8;
    1038    45609700 :             accum >>= 8;
    1039             :         }
    1040             :     }
    1041             : 
    1042             :     /* Store the straggler (if any). */
    1043      459068 :     assert(accumbits < 8);
    1044      459068 :     assert(carry == 0);  /* else do_twos_comp and *every* digit was 0 */
    1045      459068 :     if (accumbits > 0) {
    1046      346121 :         if (j >= n)
    1047         209 :             goto Overflow;
    1048      345912 :         ++j;
    1049      345912 :         if (do_twos_comp) {
    1050             :             /* Fill leading bits of the byte with sign bits
    1051             :                (appropriately pretending that the int had an
    1052             :                infinite supply of sign bits). */
    1053       32508 :             accum |= (~(twodigits)0) << accumbits;
    1054             :         }
    1055      345912 :         *p = (unsigned char)(accum & 0xff);
    1056      345912 :         p += pincr;
    1057             :     }
    1058      112947 :     else if (j == n && n > 0 && is_signed) {
    1059             :         /* The main loop filled the byte array exactly, so the code
    1060             :            just above didn't get to ensure there's a sign bit, and the
    1061             :            loop below wouldn't add one either.  Make sure a sign bit
    1062             :            exists. */
    1063        1292 :         unsigned char msb = *(p - pincr);
    1064        1292 :         int sign_bit_set = msb >= 0x80;
    1065        1292 :         assert(accumbits == 0);
    1066        1292 :         if (sign_bit_set == do_twos_comp)
    1067           0 :             return 0;
    1068             :         else
    1069        1292 :             goto Overflow;
    1070             :     }
    1071             : 
    1072             :     /* Fill remaining bytes with copies of the sign bit. */
    1073             :     {
    1074      457567 :         unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
    1075     1033050 :         for ( ; j < n; ++j, p += pincr)
    1076      575483 :             *p = signbyte;
    1077             :     }
    1078             : 
    1079      457567 :     return 0;
    1080             : 
    1081        1511 :   Overflow:
    1082        1511 :     PyErr_SetString(PyExc_OverflowError, "int too big to convert");
    1083        1511 :     return -1;
    1084             : 
    1085             : }
    1086             : 
    1087             : /* Create a new int object from a C pointer */
    1088             : 
    1089             : PyObject *
    1090     7459730 : PyLong_FromVoidPtr(void *p)
    1091             : {
    1092             : #if SIZEOF_VOID_P <= SIZEOF_LONG
    1093     7459730 :     return PyLong_FromUnsignedLong((unsigned long)(uintptr_t)p);
    1094             : #else
    1095             : 
    1096             : #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
    1097             : #   error "PyLong_FromVoidPtr: sizeof(long long) < sizeof(void*)"
    1098             : #endif
    1099             :     return PyLong_FromUnsignedLongLong((unsigned long long)(uintptr_t)p);
    1100             : #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
    1101             : 
    1102             : }
    1103             : 
    1104             : /* Get a C pointer from an int object. */
    1105             : 
    1106             : void *
    1107       29577 : PyLong_AsVoidPtr(PyObject *vv)
    1108             : {
    1109             : #if SIZEOF_VOID_P <= SIZEOF_LONG
    1110             :     long x;
    1111             : 
    1112       29577 :     if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
    1113           0 :         x = PyLong_AsLong(vv);
    1114             :     else
    1115       29577 :         x = PyLong_AsUnsignedLong(vv);
    1116             : #else
    1117             : 
    1118             : #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
    1119             : #   error "PyLong_AsVoidPtr: sizeof(long long) < sizeof(void*)"
    1120             : #endif
    1121             :     long long x;
    1122             : 
    1123             :     if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
    1124             :         x = PyLong_AsLongLong(vv);
    1125             :     else
    1126             :         x = PyLong_AsUnsignedLongLong(vv);
    1127             : 
    1128             : #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
    1129             : 
    1130       29577 :     if (x == -1 && PyErr_Occurred())
    1131           3 :         return NULL;
    1132       29574 :     return (void *)x;
    1133             : }
    1134             : 
    1135             : /* Initial long long support by Chris Herborth (chrish@qnx.com), later
    1136             :  * rewritten to use the newer PyLong_{As,From}ByteArray API.
    1137             :  */
    1138             : 
    1139             : #define PY_ABS_LLONG_MIN (0-(unsigned long long)LLONG_MIN)
    1140             : 
    1141             : /* Create a new int object from a C long long int. */
    1142             : 
    1143             : PyObject *
    1144     6772310 : PyLong_FromLongLong(long long ival)
    1145             : {
    1146             :     PyLongObject *v;
    1147             :     unsigned long long abs_ival, t;
    1148             :     int ndigits;
    1149             : 
    1150             :     /* Handle small and medium cases. */
    1151     6772310 :     if (IS_SMALL_INT(ival)) {
    1152       96281 :         return get_small_int((sdigit)ival);
    1153             :     }
    1154     6676030 :     if (-(long long)PyLong_MASK <= ival && ival <= (long long)PyLong_MASK) {
    1155     2626550 :         return _PyLong_FromMedium((sdigit)ival);
    1156             :     }
    1157             : 
    1158             :     /* Count digits (at least two - smaller cases were handled above). */
    1159     4049480 :     abs_ival = ival < 0 ? 0U-(unsigned long long)ival : (unsigned long long)ival;
    1160             :     /* Do shift in two steps to avoid possible undefined behavior. */
    1161     4049480 :     t = abs_ival >> PyLong_SHIFT >> PyLong_SHIFT;
    1162     4049480 :     ndigits = 2;
    1163     4122300 :     while (t) {
    1164       72813 :         ++ndigits;
    1165       72813 :         t >>= PyLong_SHIFT;
    1166             :     }
    1167             : 
    1168             :     /* Construct output value. */
    1169     4049480 :     v = _PyLong_New(ndigits);
    1170     4049480 :     if (v != NULL) {
    1171     4049480 :         digit *p = v->ob_digit;
    1172     4049480 :         Py_SET_SIZE(v, ival < 0 ? -ndigits : ndigits);
    1173     4049480 :         t = abs_ival;
    1174    12221300 :         while (t) {
    1175     8171780 :             *p++ = (digit)(t & PyLong_MASK);
    1176     8171780 :             t >>= PyLong_SHIFT;
    1177             :         }
    1178             :     }
    1179     4049480 :     return (PyObject *)v;
    1180             : }
    1181             : 
    1182             : /* Create a new int object from a C Py_ssize_t. */
    1183             : 
    1184             : PyObject *
    1185    92365700 : PyLong_FromSsize_t(Py_ssize_t ival)
    1186             : {
    1187             :     PyLongObject *v;
    1188             :     size_t abs_ival;
    1189             :     size_t t;  /* unsigned so >> doesn't propagate sign bit */
    1190    92365700 :     int ndigits = 0;
    1191    92365700 :     int negative = 0;
    1192             : 
    1193    92365700 :     if (IS_SMALL_INT(ival)) {
    1194    73017600 :         return get_small_int((sdigit)ival);
    1195             :     }
    1196             : 
    1197    19348200 :     if (ival < 0) {
    1198             :         /* avoid signed overflow when ival = SIZE_T_MIN */
    1199     1046000 :         abs_ival = (size_t)(-1-ival)+1;
    1200     1046000 :         negative = 1;
    1201             :     }
    1202             :     else {
    1203    18302200 :         abs_ival = (size_t)ival;
    1204             :     }
    1205             : 
    1206             :     /* Count the number of Python digits. */
    1207    19348200 :     t = abs_ival;
    1208    42049900 :     while (t) {
    1209    22701700 :         ++ndigits;
    1210    22701700 :         t >>= PyLong_SHIFT;
    1211             :     }
    1212    19348200 :     v = _PyLong_New(ndigits);
    1213    19348200 :     if (v != NULL) {
    1214    19348200 :         digit *p = v->ob_digit;
    1215    19348200 :         Py_SET_SIZE(v, negative ? -ndigits : ndigits);
    1216    19348200 :         t = abs_ival;
    1217    42049900 :         while (t) {
    1218    22701700 :             *p++ = (digit)(t & PyLong_MASK);
    1219    22701700 :             t >>= PyLong_SHIFT;
    1220             :         }
    1221             :     }
    1222    19348200 :     return (PyObject *)v;
    1223             : }
    1224             : 
    1225             : /* Get a C long long int from an int object or any object that has an
    1226             :    __index__ method.  Return -1 and set an error if overflow occurs. */
    1227             : 
    1228             : long long
    1229      210067 : PyLong_AsLongLong(PyObject *vv)
    1230             : {
    1231             :     PyLongObject *v;
    1232             :     long long bytes;
    1233             :     int res;
    1234      210067 :     int do_decref = 0; /* if PyNumber_Index was called */
    1235             : 
    1236      210067 :     if (vv == NULL) {
    1237           0 :         PyErr_BadInternalCall();
    1238           0 :         return -1;
    1239             :     }
    1240             : 
    1241      210067 :     if (PyLong_Check(vv)) {
    1242      210014 :         v = (PyLongObject *)vv;
    1243             :     }
    1244             :     else {
    1245          53 :         v = (PyLongObject *)_PyNumber_Index(vv);
    1246          53 :         if (v == NULL)
    1247          41 :             return -1;
    1248          12 :         do_decref = 1;
    1249             :     }
    1250             : 
    1251      210026 :     res = 0;
    1252      210026 :     switch(Py_SIZE(v)) {
    1253       24382 :     case -1:
    1254       24382 :         bytes = -(sdigit)v->ob_digit[0];
    1255       24382 :         break;
    1256       48111 :     case 0:
    1257       48111 :         bytes = 0;
    1258       48111 :         break;
    1259       49680 :     case 1:
    1260       49680 :         bytes = v->ob_digit[0];
    1261       49680 :         break;
    1262       87853 :     default:
    1263       87853 :         res = _PyLong_AsByteArray((PyLongObject *)v, (unsigned char *)&bytes,
    1264             :                                   SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 1);
    1265             :     }
    1266      210026 :     if (do_decref) {
    1267          12 :         Py_DECREF(v);
    1268             :     }
    1269             : 
    1270             :     /* Plan 9 can't handle long long in ? : expressions */
    1271      210026 :     if (res < 0)
    1272         975 :         return (long long)-1;
    1273             :     else
    1274      209051 :         return bytes;
    1275             : }
    1276             : 
    1277             : /* Get a C unsigned long long int from an int object.
    1278             :    Return -1 and set an error if overflow occurs. */
    1279             : 
    1280             : unsigned long long
    1281      149158 : PyLong_AsUnsignedLongLong(PyObject *vv)
    1282             : {
    1283             :     PyLongObject *v;
    1284             :     unsigned long long bytes;
    1285             :     int res;
    1286             : 
    1287      149158 :     if (vv == NULL) {
    1288           0 :         PyErr_BadInternalCall();
    1289           0 :         return (unsigned long long)-1;
    1290             :     }
    1291      149158 :     if (!PyLong_Check(vv)) {
    1292           9 :         PyErr_SetString(PyExc_TypeError, "an integer is required");
    1293           9 :         return (unsigned long long)-1;
    1294             :     }
    1295             : 
    1296      149149 :     v = (PyLongObject*)vv;
    1297      149149 :     switch(Py_SIZE(v)) {
    1298        4416 :     case 0: return 0;
    1299       36514 :     case 1: return v->ob_digit[0];
    1300             :     }
    1301             : 
    1302      108219 :     res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
    1303             :                               SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 0);
    1304             : 
    1305             :     /* Plan 9 can't handle long long in ? : expressions */
    1306      108219 :     if (res < 0)
    1307        1667 :         return (unsigned long long)res;
    1308             :     else
    1309      106552 :         return bytes;
    1310             : }
    1311             : 
    1312             : /* Get a C unsigned long int from an int object, ignoring the high bits.
    1313             :    Returns -1 and sets an error condition if an error occurs. */
    1314             : 
    1315             : static unsigned long long
    1316       38241 : _PyLong_AsUnsignedLongLongMask(PyObject *vv)
    1317             : {
    1318             :     PyLongObject *v;
    1319             :     unsigned long long x;
    1320             :     Py_ssize_t i;
    1321             :     int sign;
    1322             : 
    1323       38241 :     if (vv == NULL || !PyLong_Check(vv)) {
    1324           0 :         PyErr_BadInternalCall();
    1325           0 :         return (unsigned long long) -1;
    1326             :     }
    1327       38241 :     v = (PyLongObject *)vv;
    1328       38241 :     switch(Py_SIZE(v)) {
    1329       17530 :     case 0: return 0;
    1330       20707 :     case 1: return v->ob_digit[0];
    1331             :     }
    1332           4 :     i = Py_SIZE(v);
    1333           4 :     sign = 1;
    1334           4 :     x = 0;
    1335           4 :     if (i < 0) {
    1336           0 :         sign = -1;
    1337           0 :         i = -i;
    1338             :     }
    1339          17 :     while (--i >= 0) {
    1340          13 :         x = (x << PyLong_SHIFT) | v->ob_digit[i];
    1341             :     }
    1342           4 :     return x * sign;
    1343             : }
    1344             : 
    1345             : unsigned long long
    1346       38242 : PyLong_AsUnsignedLongLongMask(PyObject *op)
    1347             : {
    1348             :     PyLongObject *lo;
    1349             :     unsigned long long val;
    1350             : 
    1351       38242 :     if (op == NULL) {
    1352           1 :         PyErr_BadInternalCall();
    1353           1 :         return (unsigned long long)-1;
    1354             :     }
    1355             : 
    1356       38241 :     if (PyLong_Check(op)) {
    1357       38241 :         return _PyLong_AsUnsignedLongLongMask(op);
    1358             :     }
    1359             : 
    1360           0 :     lo = (PyLongObject *)_PyNumber_Index(op);
    1361           0 :     if (lo == NULL)
    1362           0 :         return (unsigned long long)-1;
    1363             : 
    1364           0 :     val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo);
    1365           0 :     Py_DECREF(lo);
    1366           0 :     return val;
    1367             : }
    1368             : 
    1369             : /* Get a C long long int from an int object or any object that has an
    1370             :    __index__ method.
    1371             : 
    1372             :    On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
    1373             :    the result.  Otherwise *overflow is 0.
    1374             : 
    1375             :    For other errors (e.g., TypeError), return -1 and set an error condition.
    1376             :    In this case *overflow will be 0.
    1377             : */
    1378             : 
    1379             : long long
    1380      114271 : PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
    1381             : {
    1382             :     /* This version by Tim Peters */
    1383             :     PyLongObject *v;
    1384             :     unsigned long long x, prev;
    1385             :     long long res;
    1386             :     Py_ssize_t i;
    1387             :     int sign;
    1388      114271 :     int do_decref = 0; /* if PyNumber_Index was called */
    1389             : 
    1390      114271 :     *overflow = 0;
    1391      114271 :     if (vv == NULL) {
    1392           0 :         PyErr_BadInternalCall();
    1393           0 :         return -1;
    1394             :     }
    1395             : 
    1396      114271 :     if (PyLong_Check(vv)) {
    1397      114271 :         v = (PyLongObject *)vv;
    1398             :     }
    1399             :     else {
    1400           0 :         v = (PyLongObject *)_PyNumber_Index(vv);
    1401           0 :         if (v == NULL)
    1402           0 :             return -1;
    1403           0 :         do_decref = 1;
    1404             :     }
    1405             : 
    1406      114271 :     res = -1;
    1407      114271 :     i = Py_SIZE(v);
    1408             : 
    1409      114271 :     switch (i) {
    1410           2 :     case -1:
    1411           2 :         res = -(sdigit)v->ob_digit[0];
    1412           2 :         break;
    1413        1738 :     case 0:
    1414        1738 :         res = 0;
    1415        1738 :         break;
    1416      112494 :     case 1:
    1417      112494 :         res = v->ob_digit[0];
    1418      112494 :         break;
    1419          37 :     default:
    1420          37 :         sign = 1;
    1421          37 :         x = 0;
    1422          37 :         if (i < 0) {
    1423           6 :             sign = -1;
    1424           6 :             i = -(i);
    1425             :         }
    1426         123 :         while (--i >= 0) {
    1427         108 :             prev = x;
    1428         108 :             x = (x << PyLong_SHIFT) + v->ob_digit[i];
    1429         108 :             if ((x >> PyLong_SHIFT) != prev) {
    1430          22 :                 *overflow = sign;
    1431          22 :                 goto exit;
    1432             :             }
    1433             :         }
    1434             :         /* Haven't lost any bits, but casting to long requires extra
    1435             :          * care (see comment above).
    1436             :          */
    1437          15 :         if (x <= (unsigned long long)LLONG_MAX) {
    1438           6 :             res = (long long)x * sign;
    1439             :         }
    1440           9 :         else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
    1441           1 :             res = LLONG_MIN;
    1442             :         }
    1443             :         else {
    1444           8 :             *overflow = sign;
    1445             :             /* res is already set to -1 */
    1446             :         }
    1447             :     }
    1448      114271 :   exit:
    1449      114271 :     if (do_decref) {
    1450           0 :         Py_DECREF(v);
    1451             :     }
    1452      114271 :     return res;
    1453             : }
    1454             : 
    1455             : int
    1456      186614 : _PyLong_UnsignedShort_Converter(PyObject *obj, void *ptr)
    1457             : {
    1458             :     unsigned long uval;
    1459             : 
    1460      186614 :     if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
    1461           2 :         PyErr_SetString(PyExc_ValueError, "value must be positive");
    1462           2 :         return 0;
    1463             :     }
    1464      186612 :     uval = PyLong_AsUnsignedLong(obj);
    1465      186612 :     if (uval == (unsigned long)-1 && PyErr_Occurred())
    1466           2 :         return 0;
    1467      186610 :     if (uval > USHRT_MAX) {
    1468           2 :         PyErr_SetString(PyExc_OverflowError,
    1469             :                         "Python int too large for C unsigned short");
    1470           2 :         return 0;
    1471             :     }
    1472             : 
    1473      186608 :     *(unsigned short *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned short);
    1474      186608 :     return 1;
    1475             : }
    1476             : 
    1477             : int
    1478           4 : _PyLong_UnsignedInt_Converter(PyObject *obj, void *ptr)
    1479             : {
    1480             :     unsigned long uval;
    1481             : 
    1482           4 :     if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
    1483           0 :         PyErr_SetString(PyExc_ValueError, "value must be positive");
    1484           0 :         return 0;
    1485             :     }
    1486           4 :     uval = PyLong_AsUnsignedLong(obj);
    1487           4 :     if (uval == (unsigned long)-1 && PyErr_Occurred())
    1488           0 :         return 0;
    1489           4 :     if (uval > UINT_MAX) {
    1490           0 :         PyErr_SetString(PyExc_OverflowError,
    1491             :                         "Python int too large for C unsigned int");
    1492           0 :         return 0;
    1493             :     }
    1494             : 
    1495           4 :     *(unsigned int *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned int);
    1496           4 :     return 1;
    1497             : }
    1498             : 
    1499             : int
    1500        1102 : _PyLong_UnsignedLong_Converter(PyObject *obj, void *ptr)
    1501             : {
    1502             :     unsigned long uval;
    1503             : 
    1504        1102 :     if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
    1505           6 :         PyErr_SetString(PyExc_ValueError, "value must be positive");
    1506           6 :         return 0;
    1507             :     }
    1508        1096 :     uval = PyLong_AsUnsignedLong(obj);
    1509        1096 :     if (uval == (unsigned long)-1 && PyErr_Occurred())
    1510           4 :         return 0;
    1511             : 
    1512        1092 :     *(unsigned long *)ptr = uval;
    1513        1092 :     return 1;
    1514             : }
    1515             : 
    1516             : int
    1517          19 : _PyLong_UnsignedLongLong_Converter(PyObject *obj, void *ptr)
    1518             : {
    1519             :     unsigned long long uval;
    1520             : 
    1521          19 :     if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
    1522           2 :         PyErr_SetString(PyExc_ValueError, "value must be positive");
    1523           2 :         return 0;
    1524             :     }
    1525          17 :     uval = PyLong_AsUnsignedLongLong(obj);
    1526          17 :     if (uval == (unsigned long long)-1 && PyErr_Occurred())
    1527           1 :         return 0;
    1528             : 
    1529          16 :     *(unsigned long long *)ptr = uval;
    1530          16 :     return 1;
    1531             : }
    1532             : 
    1533             : int
    1534           0 : _PyLong_Size_t_Converter(PyObject *obj, void *ptr)
    1535             : {
    1536             :     size_t uval;
    1537             : 
    1538           0 :     if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
    1539           0 :         PyErr_SetString(PyExc_ValueError, "value must be positive");
    1540           0 :         return 0;
    1541             :     }
    1542           0 :     uval = PyLong_AsSize_t(obj);
    1543           0 :     if (uval == (size_t)-1 && PyErr_Occurred())
    1544           0 :         return 0;
    1545             : 
    1546           0 :     *(size_t *)ptr = uval;
    1547           0 :     return 1;
    1548             : }
    1549             : 
    1550             : 
    1551             : #define CHECK_BINOP(v,w)                                \
    1552             :     do {                                                \
    1553             :         if (!PyLong_Check(v) || !PyLong_Check(w))       \
    1554             :             Py_RETURN_NOTIMPLEMENTED;                   \
    1555             :     } while(0)
    1556             : 
    1557             : /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
    1558             :  * is modified in place, by adding y to it.  Carries are propagated as far as
    1559             :  * x[m-1], and the remaining carry (0 or 1) is returned.
    1560             :  */
    1561             : static digit
    1562        8031 : v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
    1563             : {
    1564             :     Py_ssize_t i;
    1565        8031 :     digit carry = 0;
    1566             : 
    1567        8031 :     assert(m >= n);
    1568     1465950 :     for (i = 0; i < n; ++i) {
    1569     1457920 :         carry += x[i] + y[i];
    1570     1457920 :         x[i] = carry & PyLong_MASK;
    1571     1457920 :         carry >>= PyLong_SHIFT;
    1572     1457920 :         assert((carry & 1) == carry);
    1573             :     }
    1574      280551 :     for (; carry && i < m; ++i) {
    1575      272520 :         carry += x[i];
    1576      272520 :         x[i] = carry & PyLong_MASK;
    1577      272520 :         carry >>= PyLong_SHIFT;
    1578      272520 :         assert((carry & 1) == carry);
    1579             :     }
    1580        8031 :     return carry;
    1581             : }
    1582             : 
    1583             : /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
    1584             :  * is modified in place, by subtracting y from it.  Borrows are propagated as
    1585             :  * far as x[m-1], and the remaining borrow (0 or 1) is returned.
    1586             :  */
    1587             : static digit
    1588       13858 : v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
    1589             : {
    1590             :     Py_ssize_t i;
    1591       13858 :     digit borrow = 0;
    1592             : 
    1593       13858 :     assert(m >= n);
    1594     1989150 :     for (i = 0; i < n; ++i) {
    1595     1975290 :         borrow = x[i] - y[i] - borrow;
    1596     1975290 :         x[i] = borrow & PyLong_MASK;
    1597     1975290 :         borrow >>= PyLong_SHIFT;
    1598     1975290 :         borrow &= 1;            /* keep only 1 sign bit */
    1599             :     }
    1600      292236 :     for (; borrow && i < m; ++i) {
    1601      278378 :         borrow = x[i] - borrow;
    1602      278378 :         x[i] = borrow & PyLong_MASK;
    1603      278378 :         borrow >>= PyLong_SHIFT;
    1604      278378 :         borrow &= 1;
    1605             :     }
    1606       13858 :     return borrow;
    1607             : }
    1608             : 
    1609             : /* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT.  Put
    1610             :  * result in z[0:m], and return the d bits shifted out of the top.
    1611             :  */
    1612             : static digit
    1613     5445940 : v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
    1614             : {
    1615             :     Py_ssize_t i;
    1616     5445940 :     digit carry = 0;
    1617             : 
    1618     5445940 :     assert(0 <= d && d < PyLong_SHIFT);
    1619    32320100 :     for (i=0; i < m; i++) {
    1620    26874200 :         twodigits acc = (twodigits)a[i] << d | carry;
    1621    26874200 :         z[i] = (digit)acc & PyLong_MASK;
    1622    26874200 :         carry = (digit)(acc >> PyLong_SHIFT);
    1623             :     }
    1624     5445940 :     return carry;
    1625             : }
    1626             : 
    1627             : /* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT.  Put
    1628             :  * result in z[0:m], and return the d bits shifted out of the bottom.
    1629             :  */
    1630             : static digit
    1631     2704420 : v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
    1632             : {
    1633             :     Py_ssize_t i;
    1634     2704420 :     digit carry = 0;
    1635     2704420 :     digit mask = ((digit)1 << d) - 1U;
    1636             : 
    1637     2704420 :     assert(0 <= d && d < PyLong_SHIFT);
    1638    14430900 :     for (i=m; i-- > 0;) {
    1639    11726500 :         twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
    1640    11726500 :         carry = (digit)acc & mask;
    1641    11726500 :         z[i] = (digit)(acc >> d);
    1642             :     }
    1643     2704420 :     return carry;
    1644             : }
    1645             : 
    1646             : /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
    1647             :    in pout, and returning the remainder.  pin and pout point at the LSD.
    1648             :    It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
    1649             :    _PyLong_Format, but that should be done with great care since ints are
    1650             :    immutable.
    1651             : 
    1652             :    This version of the code can be 20% faster than the pre-2022 version
    1653             :    on todays compilers on architectures like amd64.  It evolved from Mark
    1654             :    Dickinson observing that a 128:64 divide instruction was always being
    1655             :    generated by the compiler despite us working with 30-bit digit values.
    1656             :    See the thread for full context:
    1657             : 
    1658             :      https://mail.python.org/archives/list/python-dev@python.org/thread/ZICIMX5VFCX4IOFH5NUPVHCUJCQ4Q7QM/#NEUNFZU3TQU4CPTYZNF3WCN7DOJBBTK5
    1659             : 
    1660             :    If you ever want to change this code, pay attention to performance using
    1661             :    different compilers, optimization levels, and cpu architectures. Beware of
    1662             :    PGO/FDO builds doing value specialization such as a fast path for //10. :)
    1663             : 
    1664             :    Verify that 17 isn't specialized and this works as a quick test:
    1665             :      python -m timeit -s 'x = 10**1000; r=x//10; assert r == 10**999, r' 'x//17'
    1666             : */
    1667             : static digit
    1668      577814 : inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
    1669             : {
    1670      577814 :     digit remainder = 0;
    1671             : 
    1672      577814 :     assert(n > 0 && n <= PyLong_MASK);
    1673     7355580 :     while (--size >= 0) {
    1674             :         twodigits dividend;
    1675     6777770 :         dividend = ((twodigits)remainder << PyLong_SHIFT) | pin[size];
    1676             :         digit quotient;
    1677     6777770 :         quotient = (digit)(dividend / n);
    1678     6777770 :         remainder = dividend % n;
    1679     6777770 :         pout[size] = quotient;
    1680             :     }
    1681      577814 :     return remainder;
    1682             : }
    1683             : 
    1684             : 
    1685             : /* Divide an integer by a digit, returning both the quotient
    1686             :    (as function result) and the remainder (through *prem).
    1687             :    The sign of a is ignored; n should not be zero. */
    1688             : 
    1689             : static PyLongObject *
    1690      561377 : divrem1(PyLongObject *a, digit n, digit *prem)
    1691             : {
    1692      561377 :     const Py_ssize_t size = Py_ABS(Py_SIZE(a));
    1693             :     PyLongObject *z;
    1694             : 
    1695      561377 :     assert(n > 0 && n <= PyLong_MASK);
    1696      561377 :     z = _PyLong_New(size);
    1697      561377 :     if (z == NULL)
    1698           0 :         return NULL;
    1699      561377 :     *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
    1700      561377 :     return long_normalize(z);
    1701             : }
    1702             : 
    1703             : /* Remainder of long pin, w/ size digits, by non-zero digit n,
    1704             :    returning the remainder. pin points at the LSD. */
    1705             : 
    1706             : static digit
    1707      597915 : inplace_rem1(digit *pin, Py_ssize_t size, digit n)
    1708             : {
    1709      597915 :     twodigits rem = 0;
    1710             : 
    1711      597915 :     assert(n > 0 && n <= PyLong_MASK);
    1712     6870320 :     while (--size >= 0)
    1713     6272410 :         rem = ((rem << PyLong_SHIFT) | pin[size]) % n;
    1714      597915 :     return (digit)rem;
    1715             : }
    1716             : 
    1717             : /* Get the remainder of an integer divided by a digit, returning
    1718             :    the remainder as the result of the function. The sign of a is
    1719             :    ignored; n should not be zero. */
    1720             : 
    1721             : static PyLongObject *
    1722      597915 : rem1(PyLongObject *a, digit n)
    1723             : {
    1724      597915 :     const Py_ssize_t size = Py_ABS(Py_SIZE(a));
    1725             : 
    1726      597915 :     assert(n > 0 && n <= PyLong_MASK);
    1727      597915 :     return (PyLongObject *)PyLong_FromLong(
    1728      597915 :         (long)inplace_rem1(a->ob_digit, size, n)
    1729             :     );
    1730             : }
    1731             : 
    1732             : /* Convert an integer to a base 10 string.  Returns a new non-shared
    1733             :    string.  (Return value is non-shared so that callers can modify the
    1734             :    returned value if necessary.) */
    1735             : 
    1736             : static int
    1737     7968320 : long_to_decimal_string_internal(PyObject *aa,
    1738             :                                 PyObject **p_output,
    1739             :                                 _PyUnicodeWriter *writer,
    1740             :                                 _PyBytesWriter *bytes_writer,
    1741             :                                 char **bytes_str)
    1742             : {
    1743             :     PyLongObject *scratch, *a;
    1744     7968320 :     PyObject *str = NULL;
    1745             :     Py_ssize_t size, strlen, size_a, i, j;
    1746             :     digit *pout, *pin, rem, tenpow;
    1747             :     int negative;
    1748             :     int d;
    1749             :     int kind;
    1750             : 
    1751     7968320 :     a = (PyLongObject *)aa;
    1752     7968320 :     if (a == NULL || !PyLong_Check(a)) {
    1753           0 :         PyErr_BadInternalCall();
    1754           0 :         return -1;
    1755             :     }
    1756     7968320 :     size_a = Py_ABS(Py_SIZE(a));
    1757     7968320 :     negative = Py_SIZE(a) < 0;
    1758             : 
    1759             :     /* quick and dirty upper bound for the number of digits
    1760             :        required to express a in base _PyLong_DECIMAL_BASE:
    1761             : 
    1762             :          #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
    1763             : 
    1764             :        But log2(a) < size_a * PyLong_SHIFT, and
    1765             :        log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
    1766             :                                   > 3.3 * _PyLong_DECIMAL_SHIFT
    1767             : 
    1768             :          size_a * PyLong_SHIFT / (3.3 * _PyLong_DECIMAL_SHIFT) =
    1769             :              size_a + size_a / d < size_a + size_a / floor(d),
    1770             :        where d = (3.3 * _PyLong_DECIMAL_SHIFT) /
    1771             :                  (PyLong_SHIFT - 3.3 * _PyLong_DECIMAL_SHIFT)
    1772             :     */
    1773     7968320 :     d = (33 * _PyLong_DECIMAL_SHIFT) /
    1774             :         (10 * PyLong_SHIFT - 33 * _PyLong_DECIMAL_SHIFT);
    1775     7968320 :     assert(size_a < PY_SSIZE_T_MAX/2);
    1776     7968320 :     size = 1 + size_a + size_a / d;
    1777     7968320 :     scratch = _PyLong_New(size);
    1778     7968320 :     if (scratch == NULL)
    1779           0 :         return -1;
    1780             : 
    1781             :     /* convert array of base _PyLong_BASE digits in pin to an array of
    1782             :        base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
    1783             :        Volume 2 (3rd edn), section 4.4, Method 1b). */
    1784     7968320 :     pin = a->ob_digit;
    1785     7968320 :     pout = scratch->ob_digit;
    1786     7968320 :     size = 0;
    1787    14753600 :     for (i = size_a; --i >= 0; ) {
    1788     6785260 :         digit hi = pin[i];
    1789    98176300 :         for (j = 0; j < size; j++) {
    1790    91391100 :             twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
    1791    91391100 :             hi = (digit)(z / _PyLong_DECIMAL_BASE);
    1792    91391100 :             pout[j] = (digit)(z - (twodigits)hi *
    1793             :                               _PyLong_DECIMAL_BASE);
    1794             :         }
    1795    13592300 :         while (hi) {
    1796     6807060 :             pout[size++] = hi % _PyLong_DECIMAL_BASE;
    1797     6807060 :             hi /= _PyLong_DECIMAL_BASE;
    1798             :         }
    1799             :         /* check for keyboard interrupt */
    1800     6785260 :         SIGCHECK({
    1801             :                 Py_DECREF(scratch);
    1802             :                 return -1;
    1803             :             });
    1804             :     }
    1805             :     /* pout should have at least one digit, so that the case when a = 0
    1806             :        works correctly */
    1807     7968320 :     if (size == 0)
    1808     4492460 :         pout[size++] = 0;
    1809             : 
    1810             :     /* calculate exact length of output string, and allocate */
    1811     7968320 :     strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
    1812     7968320 :     tenpow = 10;
    1813     7968320 :     rem = pout[size-1];
    1814    14746200 :     while (rem >= tenpow) {
    1815     6777930 :         tenpow *= 10;
    1816     6777930 :         strlen++;
    1817             :     }
    1818     7968320 :     if (writer) {
    1819      677527 :         if (_PyUnicodeWriter_Prepare(writer, strlen, '9') == -1) {
    1820           0 :             Py_DECREF(scratch);
    1821           0 :             return -1;
    1822             :         }
    1823      677527 :         kind = writer->kind;
    1824             :     }
    1825     7290790 :     else if (bytes_writer) {
    1826          88 :         *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, strlen);
    1827          88 :         if (*bytes_str == NULL) {
    1828           0 :             Py_DECREF(scratch);
    1829           0 :             return -1;
    1830             :         }
    1831             :     }
    1832             :     else {
    1833     7290700 :         str = PyUnicode_New(strlen, '9');
    1834     7290700 :         if (str == NULL) {
    1835           0 :             Py_DECREF(scratch);
    1836           0 :             return -1;
    1837             :         }
    1838     7290700 :         kind = PyUnicode_KIND(str);
    1839             :     }
    1840             : 
    1841             : #define WRITE_DIGITS(p)                                               \
    1842             :     do {                                                              \
    1843             :         /* pout[0] through pout[size-2] contribute exactly            \
    1844             :            _PyLong_DECIMAL_SHIFT digits each */                       \
    1845             :         for (i=0; i < size - 1; i++) {                                \
    1846             :             rem = pout[i];                                            \
    1847             :             for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {             \
    1848             :                 *--p = '0' + rem % 10;                                \
    1849             :                 rem /= 10;                                            \
    1850             :             }                                                         \
    1851             :         }                                                             \
    1852             :         /* pout[size-1]: always produce at least one decimal digit */ \
    1853             :         rem = pout[i];                                                \
    1854             :         do {                                                          \
    1855             :             *--p = '0' + rem % 10;                                    \
    1856             :             rem /= 10;                                                \
    1857             :         } while (rem != 0);                                           \
    1858             :                                                                       \
    1859             :         /* and sign */                                                \
    1860             :         if (negative)                                                 \
    1861             :             *--p = '-';                                               \
    1862             :     } while (0)
    1863             : 
    1864             : #define WRITE_UNICODE_DIGITS(TYPE)                                    \
    1865             :     do {                                                              \
    1866             :         if (writer)                                                   \
    1867             :             p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + strlen; \
    1868             :         else                                                          \
    1869             :             p = (TYPE*)PyUnicode_DATA(str) + strlen;                  \
    1870             :                                                                       \
    1871             :         WRITE_DIGITS(p);                                              \
    1872             :                                                                       \
    1873             :         /* check we've counted correctly */                           \
    1874             :         if (writer)                                                   \
    1875             :             assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
    1876             :         else                                                          \
    1877             :             assert(p == (TYPE*)PyUnicode_DATA(str));                  \
    1878             :     } while (0)
    1879             : 
    1880             :     /* fill the string right-to-left */
    1881     7968320 :     if (bytes_writer) {
    1882          88 :         char *p = *bytes_str + strlen;
    1883         304 :         WRITE_DIGITS(p);
    1884          88 :         assert(p == *bytes_str);
    1885             :     }
    1886     7968230 :     else if (kind == PyUnicode_1BYTE_KIND) {
    1887             :         Py_UCS1 *p;
    1888    48057800 :         WRITE_UNICODE_DIGITS(Py_UCS1);
    1889             :     }
    1890          12 :     else if (kind == PyUnicode_2BYTE_KIND) {
    1891             :         Py_UCS2 *p;
    1892         132 :         WRITE_UNICODE_DIGITS(Py_UCS2);
    1893             :     }
    1894             :     else {
    1895             :         Py_UCS4 *p;
    1896           0 :         assert (kind == PyUnicode_4BYTE_KIND);
    1897           0 :         WRITE_UNICODE_DIGITS(Py_UCS4);
    1898             :     }
    1899             : #undef WRITE_DIGITS
    1900             : #undef WRITE_UNICODE_DIGITS
    1901             : 
    1902     7968320 :     _Py_DECREF_INT(scratch);
    1903     7968320 :     if (writer) {
    1904      677527 :         writer->pos += strlen;
    1905             :     }
    1906     7290790 :     else if (bytes_writer) {
    1907          88 :         (*bytes_str) += strlen;
    1908             :     }
    1909             :     else {
    1910     7290700 :         assert(_PyUnicode_CheckConsistency(str, 1));
    1911     7290700 :         *p_output = (PyObject *)str;
    1912             :     }
    1913     7968320 :     return 0;
    1914             : }
    1915             : 
    1916             : static PyObject *
    1917     7185240 : long_to_decimal_string(PyObject *aa)
    1918             : {
    1919             :     PyObject *v;
    1920     7185240 :     if (long_to_decimal_string_internal(aa, &v, NULL, NULL, NULL) == -1)
    1921           0 :         return NULL;
    1922     7185240 :     return v;
    1923             : }
    1924             : 
    1925             : /* Convert an int object to a string, using a given conversion base,
    1926             :    which should be one of 2, 8 or 16.  Return a string object.
    1927             :    If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'
    1928             :    if alternate is nonzero. */
    1929             : 
    1930             : static int
    1931      934503 : long_format_binary(PyObject *aa, int base, int alternate,
    1932             :                    PyObject **p_output, _PyUnicodeWriter *writer,
    1933             :                    _PyBytesWriter *bytes_writer, char **bytes_str)
    1934             : {
    1935      934503 :     PyLongObject *a = (PyLongObject *)aa;
    1936      934503 :     PyObject *v = NULL;
    1937             :     Py_ssize_t sz;
    1938             :     Py_ssize_t size_a;
    1939             :     int kind;
    1940             :     int negative;
    1941             :     int bits;
    1942             : 
    1943      934503 :     assert(base == 2 || base == 8 || base == 16);
    1944      934503 :     if (a == NULL || !PyLong_Check(a)) {
    1945           0 :         PyErr_BadInternalCall();
    1946           0 :         return -1;
    1947             :     }
    1948      934503 :     size_a = Py_ABS(Py_SIZE(a));
    1949      934503 :     negative = Py_SIZE(a) < 0;
    1950             : 
    1951             :     /* Compute a rough upper bound for the length of the string */
    1952      934503 :     switch (base) {
    1953      782367 :     case 16:
    1954      782367 :         bits = 4;
    1955      782367 :         break;
    1956       17720 :     case 8:
    1957       17720 :         bits = 3;
    1958       17720 :         break;
    1959      134416 :     case 2:
    1960      134416 :         bits = 1;
    1961      134416 :         break;
    1962           0 :     default:
    1963           0 :         Py_UNREACHABLE();
    1964             :     }
    1965             : 
    1966             :     /* Compute exact length 'sz' of output string. */
    1967      934503 :     if (size_a == 0) {
    1968      163511 :         sz = 1;
    1969             :     }
    1970             :     else {
    1971             :         Py_ssize_t size_a_in_bits;
    1972             :         /* Ensure overflow doesn't occur during computation of sz. */
    1973      770992 :         if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
    1974           0 :             PyErr_SetString(PyExc_OverflowError,
    1975             :                             "int too large to format");
    1976           0 :             return -1;
    1977             :         }
    1978     1541980 :         size_a_in_bits = (size_a - 1) * PyLong_SHIFT +
    1979      770992 :                          bit_length_digit(a->ob_digit[size_a - 1]);
    1980             :         /* Allow 1 character for a '-' sign. */
    1981      770992 :         sz = negative + (size_a_in_bits + (bits - 1)) / bits;
    1982             :     }
    1983      934503 :     if (alternate) {
    1984             :         /* 2 characters for prefix  */
    1985      884795 :         sz += 2;
    1986             :     }
    1987             : 
    1988      934503 :     if (writer) {
    1989       49960 :         if (_PyUnicodeWriter_Prepare(writer, sz, 'x') == -1)
    1990           0 :             return -1;
    1991       49960 :         kind = writer->kind;
    1992             :     }
    1993      884543 :     else if (bytes_writer) {
    1994         556 :         *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, sz);
    1995         556 :         if (*bytes_str == NULL)
    1996           0 :             return -1;
    1997             :     }
    1998             :     else {
    1999      883987 :         v = PyUnicode_New(sz, 'x');
    2000      883987 :         if (v == NULL)
    2001           0 :             return -1;
    2002      883987 :         kind = PyUnicode_KIND(v);
    2003             :     }
    2004             : 
    2005             : #define WRITE_DIGITS(p)                                                 \
    2006             :     do {                                                                \
    2007             :         if (size_a == 0) {                                              \
    2008             :             *--p = '0';                                                 \
    2009             :         }                                                               \
    2010             :         else {                                                          \
    2011             :             /* JRH: special case for power-of-2 bases */                \
    2012             :             twodigits accum = 0;                                        \
    2013             :             int accumbits = 0;   /* # of bits in accum */               \
    2014             :             Py_ssize_t i;                                               \
    2015             :             for (i = 0; i < size_a; ++i) {                              \
    2016             :                 accum |= (twodigits)a->ob_digit[i] << accumbits;        \
    2017             :                 accumbits += PyLong_SHIFT;                              \
    2018             :                 assert(accumbits >= bits);                              \
    2019             :                 do {                                                    \
    2020             :                     char cdigit;                                        \
    2021             :                     cdigit = (char)(accum & (base - 1));                \
    2022             :                     cdigit += (cdigit < 10) ? '0' : 'a'-10;             \
    2023             :                     *--p = cdigit;                                      \
    2024             :                     accumbits -= bits;                                  \
    2025             :                     accum >>= bits;                                     \
    2026             :                 } while (i < size_a-1 ? accumbits >= bits : accum > 0); \
    2027             :             }                                                           \
    2028             :         }                                                               \
    2029             :                                                                         \
    2030             :         if (alternate) {                                                \
    2031             :             if (base == 16)                                             \
    2032             :                 *--p = 'x';                                             \
    2033             :             else if (base == 8)                                         \
    2034             :                 *--p = 'o';                                             \
    2035             :             else /* (base == 2) */                                      \
    2036             :                 *--p = 'b';                                             \
    2037             :             *--p = '0';                                                 \
    2038             :         }                                                               \
    2039             :         if (negative)                                                   \
    2040             :             *--p = '-';                                                 \
    2041             :     } while (0)
    2042             : 
    2043             : #define WRITE_UNICODE_DIGITS(TYPE)                                      \
    2044             :     do {                                                                \
    2045             :         if (writer)                                                     \
    2046             :             p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + sz; \
    2047             :         else                                                            \
    2048             :             p = (TYPE*)PyUnicode_DATA(v) + sz;                          \
    2049             :                                                                         \
    2050             :         WRITE_DIGITS(p);                                                \
    2051             :                                                                         \
    2052             :         if (writer)                                                     \
    2053             :             assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
    2054             :         else                                                            \
    2055             :             assert(p == (TYPE*)PyUnicode_DATA(v));                      \
    2056             :     } while (0)
    2057             : 
    2058      934503 :     if (bytes_writer) {
    2059         556 :         char *p = *bytes_str + sz;
    2060        2652 :         WRITE_DIGITS(p);
    2061         556 :         assert(p == *bytes_str);
    2062             :     }
    2063      933947 :     else if (kind == PyUnicode_1BYTE_KIND) {
    2064             :         Py_UCS1 *p;
    2065     5033240 :         WRITE_UNICODE_DIGITS(Py_UCS1);
    2066             :     }
    2067           0 :     else if (kind == PyUnicode_2BYTE_KIND) {
    2068             :         Py_UCS2 *p;
    2069           0 :         WRITE_UNICODE_DIGITS(Py_UCS2);
    2070             :     }
    2071             :     else {
    2072             :         Py_UCS4 *p;
    2073           0 :         assert (kind == PyUnicode_4BYTE_KIND);
    2074           0 :         WRITE_UNICODE_DIGITS(Py_UCS4);
    2075             :     }
    2076             : #undef WRITE_DIGITS
    2077             : #undef WRITE_UNICODE_DIGITS
    2078             : 
    2079      934503 :     if (writer) {
    2080       49960 :         writer->pos += sz;
    2081             :     }
    2082      884543 :     else if (bytes_writer) {
    2083         556 :         (*bytes_str) += sz;
    2084             :     }
    2085             :     else {
    2086      883987 :         assert(_PyUnicode_CheckConsistency(v, 1));
    2087      883987 :         *p_output = v;
    2088             :     }
    2089      934503 :     return 0;
    2090             : }
    2091             : 
    2092             : PyObject *
    2093      989451 : _PyLong_Format(PyObject *obj, int base)
    2094             : {
    2095             :     PyObject *str;
    2096             :     int err;
    2097      989451 :     if (base == 10)
    2098      105464 :         err = long_to_decimal_string_internal(obj, &str, NULL, NULL, NULL);
    2099             :     else
    2100      883987 :         err = long_format_binary(obj, base, 1, &str, NULL, NULL, NULL);
    2101      989451 :     if (err == -1)
    2102           0 :         return NULL;
    2103      989451 :     return str;
    2104             : }
    2105             : 
    2106             : int
    2107      727487 : _PyLong_FormatWriter(_PyUnicodeWriter *writer,
    2108             :                      PyObject *obj,
    2109             :                      int base, int alternate)
    2110             : {
    2111      727487 :     if (base == 10)
    2112      677527 :         return long_to_decimal_string_internal(obj, NULL, writer,
    2113             :                                                NULL, NULL);
    2114             :     else
    2115       49960 :         return long_format_binary(obj, base, alternate, NULL, writer,
    2116             :                                   NULL, NULL);
    2117             : }
    2118             : 
    2119             : char*
    2120         644 : _PyLong_FormatBytesWriter(_PyBytesWriter *writer, char *str,
    2121             :                           PyObject *obj,
    2122             :                           int base, int alternate)
    2123             : {
    2124             :     char *str2;
    2125             :     int res;
    2126         644 :     str2 = str;
    2127         644 :     if (base == 10)
    2128          88 :         res = long_to_decimal_string_internal(obj, NULL, NULL,
    2129             :                                               writer, &str2);
    2130             :     else
    2131         556 :         res = long_format_binary(obj, base, alternate, NULL, NULL,
    2132             :                                  writer, &str2);
    2133         644 :     if (res < 0)
    2134           0 :         return NULL;
    2135         644 :     assert(str2 != NULL);
    2136         644 :     return str2;
    2137             : }
    2138             : 
    2139             : /* Table of digit values for 8-bit string -> integer conversion.
    2140             :  * '0' maps to 0, ..., '9' maps to 9.
    2141             :  * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
    2142             :  * All other indices map to 37.
    2143             :  * Note that when converting a base B string, a char c is a legitimate
    2144             :  * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B.
    2145             :  */
    2146             : unsigned char _PyLong_DigitValue[256] = {
    2147             :     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
    2148             :     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
    2149             :     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
    2150             :     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  37, 37, 37, 37, 37, 37,
    2151             :     37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
    2152             :     25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
    2153             :     37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
    2154             :     25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
    2155             :     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
    2156             :     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
    2157             :     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
    2158             :     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
    2159             :     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
    2160             :     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
    2161             :     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
    2162             :     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
    2163             : };
    2164             : 
    2165             : /* *str points to the first digit in a string of base `base` digits.  base
    2166             :  * is a power of 2 (2, 4, 8, 16, or 32).  *str is set to point to the first
    2167             :  * non-digit (which may be *str!).  A normalized int is returned.
    2168             :  * The point to this routine is that it takes time linear in the number of
    2169             :  * string characters.
    2170             :  *
    2171             :  * Return values:
    2172             :  *   -1 on syntax error (exception needs to be set, *res is untouched)
    2173             :  *   0 else (exception may be set, in that case *res is set to NULL)
    2174             :  */
    2175             : static int
    2176      878100 : long_from_binary_base(const char **str, int base, PyLongObject **res)
    2177             : {
    2178      878100 :     const char *p = *str;
    2179      878100 :     const char *start = p;
    2180      878100 :     char prev = 0;
    2181      878100 :     Py_ssize_t digits = 0;
    2182             :     int bits_per_char;
    2183             :     Py_ssize_t n;
    2184             :     PyLongObject *z;
    2185             :     twodigits accum;
    2186             :     int bits_in_accum;
    2187             :     digit *pdigit;
    2188             : 
    2189      878100 :     assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
    2190      878100 :     n = base;
    2191     4235480 :     for (bits_per_char = -1; n; ++bits_per_char) {
    2192     3357380 :         n >>= 1;
    2193             :     }
    2194             :     /* count digits and set p to end-of-string */
    2195    13401900 :     while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base || *p == '_') {
    2196    12523800 :         if (*p == '_') {
    2197          71 :             if (prev == '_') {
    2198           3 :                 *str = p - 1;
    2199           3 :                 return -1;
    2200             :             }
    2201             :         } else {
    2202    12523700 :             ++digits;
    2203             :         }
    2204    12523800 :         prev = *p;
    2205    12523800 :         ++p;
    2206             :     }
    2207      878097 :     if (prev == '_') {
    2208             :         /* Trailing underscore not allowed. */
    2209           3 :         *str = p - 1;
    2210           3 :         return -1;
    2211             :     }
    2212             : 
    2213      878094 :     *str = p;
    2214             :     /* n <- the number of Python digits needed,
    2215             :             = ceiling((digits * bits_per_char) / PyLong_SHIFT). */
    2216      878094 :     if (digits > (PY_SSIZE_T_MAX - (PyLong_SHIFT - 1)) / bits_per_char) {
    2217           0 :         PyErr_SetString(PyExc_ValueError,
    2218             :                         "int string too large to convert");
    2219           0 :         *res = NULL;
    2220           0 :         return 0;
    2221             :     }
    2222      878094 :     n = (digits * bits_per_char + PyLong_SHIFT - 1) / PyLong_SHIFT;
    2223      878094 :     z = _PyLong_New(n);
    2224      878094 :     if (z == NULL) {
    2225           0 :         *res = NULL;
    2226           0 :         return 0;
    2227             :     }
    2228             :     /* Read string from right, and fill in int from left; i.e.,
    2229             :      * from least to most significant in both.
    2230             :      */
    2231      878094 :     accum = 0;
    2232      878094 :     bits_in_accum = 0;
    2233      878094 :     pdigit = z->ob_digit;
    2234    13401800 :     while (--p >= start) {
    2235             :         int k;
    2236    12523700 :         if (*p == '_') {
    2237          62 :             continue;
    2238             :         }
    2239    12523700 :         k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)];
    2240    12523700 :         assert(k >= 0 && k < base);
    2241    12523700 :         accum |= (twodigits)k << bits_in_accum;
    2242    12523700 :         bits_in_accum += bits_per_char;
    2243    12523700 :         if (bits_in_accum >= PyLong_SHIFT) {
    2244      341547 :             *pdigit++ = (digit)(accum & PyLong_MASK);
    2245      341547 :             assert(pdigit - z->ob_digit <= n);
    2246      341547 :             accum >>= PyLong_SHIFT;
    2247      341547 :             bits_in_accum -= PyLong_SHIFT;
    2248      341547 :             assert(bits_in_accum < PyLong_SHIFT);
    2249             :         }
    2250             :     }
    2251      878094 :     if (bits_in_accum) {
    2252      877418 :         assert(bits_in_accum <= PyLong_SHIFT);
    2253      877418 :         *pdigit++ = (digit)accum;
    2254      877418 :         assert(pdigit - z->ob_digit <= n);
    2255             :     }
    2256      878094 :     while (pdigit - z->ob_digit < n)
    2257           0 :         *pdigit++ = 0;
    2258      878094 :     *res = long_normalize(z);
    2259      878094 :     return 0;
    2260             : }
    2261             : 
    2262             : /* Parses an int from a bytestring. Leading and trailing whitespace will be
    2263             :  * ignored.
    2264             :  *
    2265             :  * If successful, a PyLong object will be returned and 'pend' will be pointing
    2266             :  * to the first unused byte unless it's NULL.
    2267             :  *
    2268             :  * If unsuccessful, NULL will be returned.
    2269             :  */
    2270             : PyObject *
    2271     1890220 : PyLong_FromString(const char *str, char **pend, int base)
    2272             : {
    2273     1890220 :     int sign = 1, error_if_nonzero = 0;
    2274     1890220 :     const char *start, *orig_str = str;
    2275     1890220 :     PyLongObject *z = NULL;
    2276             :     PyObject *strobj;
    2277             :     Py_ssize_t slen;
    2278             : 
    2279     1890220 :     if ((base != 0 && base < 2) || base > 36) {
    2280           0 :         PyErr_SetString(PyExc_ValueError,
    2281             :                         "int() arg 2 must be >= 2 and <= 36");
    2282           0 :         return NULL;
    2283             :     }
    2284     1919420 :     while (*str != '\0' && Py_ISSPACE(*str)) {
    2285       29195 :         str++;
    2286             :     }
    2287     1890220 :     if (*str == '+') {
    2288       13065 :         ++str;
    2289             :     }
    2290     1877160 :     else if (*str == '-') {
    2291       37273 :         ++str;
    2292       37273 :         sign = -1;
    2293             :     }
    2294     1890220 :     if (base == 0) {
    2295       53087 :         if (str[0] != '0') {
    2296       51487 :             base = 10;
    2297             :         }
    2298        1600 :         else if (str[1] == 'x' || str[1] == 'X') {
    2299         693 :             base = 16;
    2300             :         }
    2301         907 :         else if (str[1] == 'o' || str[1] == 'O') {
    2302         411 :             base = 8;
    2303             :         }
    2304         496 :         else if (str[1] == 'b' || str[1] == 'B') {
    2305         407 :             base = 2;
    2306             :         }
    2307             :         else {
    2308             :             /* "old" (C-style) octal literal, now invalid.
    2309             :                it might still be zero though */
    2310          89 :             error_if_nonzero = 1;
    2311          89 :             base = 10;
    2312             :         }
    2313             :     }
    2314     1890220 :     if (str[0] == '0' &&
    2315      825567 :         ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
    2316      669747 :          (base == 8  && (str[1] == 'o' || str[1] == 'O')) ||
    2317      290483 :          (base == 2  && (str[1] == 'b' || str[1] == 'B')))) {
    2318      156652 :         str += 2;
    2319             :         /* One underscore allowed here. */
    2320      156652 :         if (*str == '_') {
    2321           8 :             ++str;
    2322             :         }
    2323             :     }
    2324     1890220 :     if (str[0] == '_') {
    2325             :         /* May not start with underscores. */
    2326           4 :         goto onError;
    2327             :     }
    2328             : 
    2329     1890220 :     start = str;
    2330     1890220 :     if ((base & (base - 1)) == 0) {
    2331      878100 :         int res = long_from_binary_base(&str, base, &z);
    2332      878100 :         if (res < 0) {
    2333             :             /* Syntax error. */
    2334           6 :             goto onError;
    2335             :         }
    2336             :     }
    2337             :     else {
    2338             : /***
    2339             : Binary bases can be converted in time linear in the number of digits, because
    2340             : Python's representation base is binary.  Other bases (including decimal!) use
    2341             : the simple quadratic-time algorithm below, complicated by some speed tricks.
    2342             : 
    2343             : First some math:  the largest integer that can be expressed in N base-B digits
    2344             : is B**N-1.  Consequently, if we have an N-digit input in base B, the worst-
    2345             : case number of Python digits needed to hold it is the smallest integer n s.t.
    2346             : 
    2347             :     BASE**n-1 >= B**N-1  [or, adding 1 to both sides]
    2348             :     BASE**n >= B**N      [taking logs to base BASE]
    2349             :     n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
    2350             : 
    2351             : The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
    2352             : this quickly.  A Python int with that much space is reserved near the start,
    2353             : and the result is computed into it.
    2354             : 
    2355             : The input string is actually treated as being in base base**i (i.e., i digits
    2356             : are processed at a time), where two more static arrays hold:
    2357             : 
    2358             :     convwidth_base[base] = the largest integer i such that base**i <= BASE
    2359             :     convmultmax_base[base] = base ** convwidth_base[base]
    2360             : 
    2361             : The first of these is the largest i such that i consecutive input digits
    2362             : must fit in a single Python digit.  The second is effectively the input
    2363             : base we're really using.
    2364             : 
    2365             : Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
    2366             : convmultmax_base[base], the result is "simply"
    2367             : 
    2368             :    (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
    2369             : 
    2370             : where B = convmultmax_base[base].
    2371             : 
    2372             : Error analysis:  as above, the number of Python digits `n` needed is worst-
    2373             : case
    2374             : 
    2375             :     n >= N * log(B)/log(BASE)
    2376             : 
    2377             : where `N` is the number of input digits in base `B`.  This is computed via
    2378             : 
    2379             :     size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
    2380             : 
    2381             : below.  Two numeric concerns are how much space this can waste, and whether
    2382             : the computed result can be too small.  To be concrete, assume BASE = 2**15,
    2383             : which is the default (and it's unlikely anyone changes that).
    2384             : 
    2385             : Waste isn't a problem:  provided the first input digit isn't 0, the difference
    2386             : between the worst-case input with N digits and the smallest input with N
    2387             : digits is about a factor of B, but B is small compared to BASE so at most
    2388             : one allocated Python digit can remain unused on that count.  If
    2389             : N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
    2390             : and adding 1 returns a result 1 larger than necessary.  However, that can't
    2391             : happen:  whenever B is a power of 2, long_from_binary_base() is called
    2392             : instead, and it's impossible for B**i to be an integer power of 2**15 when
    2393             : B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
    2394             : an exact integer when B is not a power of 2, since B**i has a prime factor
    2395             : other than 2 in that case, but (2**15)**j's only prime factor is 2).
    2396             : 
    2397             : The computed result can be too small if the true value of N*log(B)/log(BASE)
    2398             : is a little bit larger than an exact integer, but due to roundoff errors (in
    2399             : computing log(B), log(BASE), their quotient, and/or multiplying that by N)
    2400             : yields a numeric result a little less than that integer.  Unfortunately, "how
    2401             : close can a transcendental function get to an integer over some range?"
    2402             : questions are generally theoretically intractable.  Computer analysis via
    2403             : continued fractions is practical:  expand log(B)/log(BASE) via continued
    2404             : fractions, giving a sequence i/j of "the best" rational approximations.  Then
    2405             : j*log(B)/log(BASE) is approximately equal to (the integer) i.  This shows that
    2406             : we can get very close to being in trouble, but very rarely.  For example,
    2407             : 76573 is a denominator in one of the continued-fraction approximations to
    2408             : log(10)/log(2**15), and indeed:
    2409             : 
    2410             :     >>> log(10)/log(2**15)*76573
    2411             :     16958.000000654003
    2412             : 
    2413             : is very close to an integer.  If we were working with IEEE single-precision,
    2414             : rounding errors could kill us.  Finding worst cases in IEEE double-precision
    2415             : requires better-than-double-precision log() functions, and Tim didn't bother.
    2416             : Instead the code checks to see whether the allocated space is enough as each
    2417             : new Python digit is added, and copies the whole thing to a larger int if not.
    2418             : This should happen extremely rarely, and in fact I don't have a test case
    2419             : that triggers it(!).  Instead the code was tested by artificially allocating
    2420             : just 1 digit at the start, so that the copying code was exercised for every
    2421             : digit beyond the first.
    2422             : ***/
    2423             :         twodigits c;           /* current input character */
    2424             :         Py_ssize_t size_z;
    2425     1012120 :         Py_ssize_t digits = 0;
    2426             :         int i;
    2427             :         int convwidth;
    2428             :         twodigits convmultmax, convmult;
    2429             :         digit *pz, *pzstop;
    2430             :         const char *scan, *lastdigit;
    2431     1012120 :         char prev = 0;
    2432             : 
    2433             :         static double log_base_BASE[37] = {0.0e0,};
    2434             :         static int convwidth_base[37] = {0,};
    2435             :         static twodigits convmultmax_base[37] = {0,};
    2436             : 
    2437     1012120 :         if (log_base_BASE[base] == 0.0) {
    2438        1701 :             twodigits convmax = base;
    2439        1701 :             int i = 1;
    2440             : 
    2441        1701 :             log_base_BASE[base] = (log((double)base) /
    2442             :                                    log((double)PyLong_BASE));
    2443       13544 :             for (;;) {
    2444       15245 :                 twodigits next = convmax * base;
    2445       15245 :                 if (next > PyLong_BASE) {
    2446        1701 :                     break;
    2447             :                 }
    2448       13544 :                 convmax = next;
    2449       13544 :                 ++i;
    2450             :             }
    2451        1701 :             convmultmax_base[base] = convmax;
    2452        1701 :             assert(i > 0);
    2453        1701 :             convwidth_base[base] = i;
    2454             :         }
    2455             : 
    2456             :         /* Find length of the string of numeric characters. */
    2457     1012120 :         scan = str;
    2458     1012120 :         lastdigit = str;
    2459             : 
    2460     7270340 :         while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base || *scan == '_') {
    2461     6258230 :             if (*scan == '_') {
    2462          32 :                 if (prev == '_') {
    2463             :                     /* Only one underscore allowed. */
    2464           2 :                     str = lastdigit + 1;
    2465           2 :                     goto onError;
    2466             :                 }
    2467             :             }
    2468             :             else {
    2469     6258200 :                 ++digits;
    2470     6258200 :                 lastdigit = scan;
    2471             :             }
    2472     6258230 :             prev = *scan;
    2473     6258230 :             ++scan;
    2474             :         }
    2475     1012120 :         if (prev == '_') {
    2476             :             /* Trailing underscore not allowed. */
    2477             :             /* Set error pointer to first underscore. */
    2478           6 :             str = lastdigit + 1;
    2479           6 :             goto onError;
    2480             :         }
    2481             : 
    2482             :         /* Create an int object that can contain the largest possible
    2483             :          * integer with this base and length.  Note that there's no
    2484             :          * need to initialize z->ob_digit -- no slot is read up before
    2485             :          * being stored into.
    2486             :          */
    2487     1012110 :         double fsize_z = (double)digits * log_base_BASE[base] + 1.0;
    2488     1012110 :         if (fsize_z > (double)MAX_LONG_DIGITS) {
    2489             :             /* The same exception as in _PyLong_New(). */
    2490           0 :             PyErr_SetString(PyExc_OverflowError,
    2491             :                             "too many digits in integer");
    2492           0 :             return NULL;
    2493             :         }
    2494     1012110 :         size_z = (Py_ssize_t)fsize_z;
    2495             :         /* Uncomment next line to test exceedingly rare copy code */
    2496             :         /* size_z = 1; */
    2497     1012110 :         assert(size_z > 0);
    2498     1012110 :         z = _PyLong_New(size_z);
    2499     1012110 :         if (z == NULL) {
    2500           0 :             return NULL;
    2501             :         }
    2502     1012110 :         Py_SET_SIZE(z, 0);
    2503             : 
    2504             :         /* `convwidth` consecutive input digits are treated as a single
    2505             :          * digit in base `convmultmax`.
    2506             :          */
    2507     1012110 :         convwidth = convwidth_base[base];
    2508     1012110 :         convmultmax = convmultmax_base[base];
    2509             : 
    2510             :         /* Work ;-) */
    2511     2425740 :         while (str < scan) {
    2512     1413630 :             if (*str == '_') {
    2513           0 :                 str++;
    2514           0 :                 continue;
    2515             :             }
    2516             :             /* grab up to convwidth digits from the input string */
    2517     1413630 :             c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
    2518     6258210 :             for (i = 1; i < convwidth && str != scan; ++str) {
    2519     4844580 :                 if (*str == '_') {
    2520          22 :                     continue;
    2521             :                 }
    2522     4844560 :                 i++;
    2523     4844560 :                 c = (twodigits)(c *  base +
    2524     4844560 :                                 (int)_PyLong_DigitValue[Py_CHARMASK(*str)]);
    2525     4844560 :                 assert(c < PyLong_BASE);
    2526             :             }
    2527             : 
    2528     1413630 :             convmult = convmultmax;
    2529             :             /* Calculate the shift only if we couldn't get
    2530             :              * convwidth digits.
    2531             :              */
    2532     1413630 :             if (i != convwidth) {
    2533      985699 :                 convmult = base;
    2534     2406930 :                 for ( ; i > 1; --i) {
    2535     1421230 :                     convmult *= base;
    2536             :                 }
    2537             :             }
    2538             : 
    2539             :             /* Multiply z by convmult, and add c. */
    2540     1413630 :             pz = z->ob_digit;
    2541     1413630 :             pzstop = pz + Py_SIZE(z);
    2542    13371500 :             for (; pz < pzstop; ++pz) {
    2543    11957800 :                 c += (twodigits)*pz * convmult;
    2544    11957800 :                 *pz = (digit)(c & PyLong_MASK);
    2545    11957800 :                 c >>= PyLong_SHIFT;
    2546             :             }
    2547             :             /* carry off the current end? */
    2548     1413630 :             if (c) {
    2549     1243100 :                 assert(c < PyLong_BASE);
    2550     1243100 :                 if (Py_SIZE(z) < size_z) {
    2551     1243100 :                     *pz = (digit)c;
    2552     1243100 :                     Py_SET_SIZE(z, Py_SIZE(z) + 1);
    2553             :                 }
    2554             :                 else {
    2555             :                     PyLongObject *tmp;
    2556             :                     /* Extremely rare.  Get more space. */
    2557           0 :                     assert(Py_SIZE(z) == size_z);
    2558           0 :                     tmp = _PyLong_New(size_z + 1);
    2559           0 :                     if (tmp == NULL) {
    2560           0 :                         Py_DECREF(z);
    2561           0 :                         return NULL;
    2562             :                     }
    2563           0 :                     memcpy(tmp->ob_digit,
    2564           0 :                            z->ob_digit,
    2565             :                            sizeof(digit) * size_z);
    2566           0 :                     Py_DECREF(z);
    2567           0 :                     z = tmp;
    2568           0 :                     z->ob_digit[size_z] = (digit)c;
    2569           0 :                     ++size_z;
    2570             :                 }
    2571             :             }
    2572             :         }
    2573             :     }
    2574     1890200 :     if (z == NULL) {
    2575           0 :         return NULL;
    2576             :     }
    2577     1890200 :     if (error_if_nonzero) {
    2578             :         /* reset the base to 0, else the exception message
    2579             :            doesn't make too much sense */
    2580          85 :         base = 0;
    2581          85 :         if (Py_SIZE(z) != 0) {
    2582           4 :             goto onError;
    2583             :         }
    2584             :         /* there might still be other problems, therefore base
    2585             :            remains zero here for the same reason */
    2586             :     }
    2587     1890200 :     if (str == start) {
    2588        1157 :         goto onError;
    2589             :     }
    2590     1889040 :     if (sign < 0) {
    2591       37150 :         Py_SET_SIZE(z, -(Py_SIZE(z)));
    2592             :     }
    2593     2069030 :     while (*str && Py_ISSPACE(*str)) {
    2594      179987 :         str++;
    2595             :     }
    2596     1889040 :     if (*str != '\0') {
    2597         378 :         goto onError;
    2598             :     }
    2599     1888660 :     long_normalize(z);
    2600     1888660 :     z = maybe_small_long(z);
    2601     1888660 :     if (z == NULL) {
    2602           0 :         return NULL;
    2603             :     }
    2604     1888660 :     if (pend != NULL) {
    2605     1747190 :         *pend = (char *)str;
    2606             :     }
    2607     1888660 :     return (PyObject *) z;
    2608             : 
    2609        1557 :   onError:
    2610        1557 :     if (pend != NULL) {
    2611        1555 :         *pend = (char *)str;
    2612             :     }
    2613        1557 :     Py_XDECREF(z);
    2614        1557 :     slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
    2615        1557 :     strobj = PyUnicode_FromStringAndSize(orig_str, slen);
    2616        1557 :     if (strobj == NULL) {
    2617           2 :         return NULL;
    2618             :     }
    2619        1555 :     PyErr_Format(PyExc_ValueError,
    2620             :                  "invalid literal for int() with base %d: %.200R",
    2621             :                  base, strobj);
    2622        1555 :     Py_DECREF(strobj);
    2623        1555 :     return NULL;
    2624             : }
    2625             : 
    2626             : /* Since PyLong_FromString doesn't have a length parameter,
    2627             :  * check here for possible NULs in the string.
    2628             :  *
    2629             :  * Reports an invalid literal as a bytes object.
    2630             :  */
    2631             : PyObject *
    2632      540040 : _PyLong_FromBytes(const char *s, Py_ssize_t len, int base)
    2633             : {
    2634             :     PyObject *result, *strobj;
    2635      540040 :     char *end = NULL;
    2636             : 
    2637      540040 :     result = PyLong_FromString(s, &end, base);
    2638      540040 :     if (end == NULL || (result != NULL && end == s + len))
    2639      540005 :         return result;
    2640          35 :     Py_XDECREF(result);
    2641          35 :     strobj = PyBytes_FromStringAndSize(s, Py_MIN(len, 200));
    2642          35 :     if (strobj != NULL) {
    2643          35 :         PyErr_Format(PyExc_ValueError,
    2644             :                      "invalid literal for int() with base %d: %.200R",
    2645             :                      base, strobj);
    2646          35 :         Py_DECREF(strobj);
    2647             :     }
    2648          35 :     return NULL;
    2649             : }
    2650             : 
    2651             : PyObject *
    2652     1208700 : PyLong_FromUnicodeObject(PyObject *u, int base)
    2653             : {
    2654             :     PyObject *result, *asciidig;
    2655             :     const char *buffer;
    2656     1208700 :     char *end = NULL;
    2657             :     Py_ssize_t buflen;
    2658             : 
    2659     1208700 :     asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u);
    2660     1208700 :     if (asciidig == NULL)
    2661           0 :         return NULL;
    2662     1208700 :     assert(PyUnicode_IS_ASCII(asciidig));
    2663             :     /* Simply get a pointer to existing ASCII characters. */
    2664     1208700 :     buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen);
    2665     1208700 :     assert(buffer != NULL);
    2666             : 
    2667     1208700 :     result = PyLong_FromString(buffer, &end, base);
    2668     1208700 :     if (end == NULL || (result != NULL && end == buffer + buflen)) {
    2669     1207180 :         Py_DECREF(asciidig);
    2670     1207180 :         return result;
    2671             :     }
    2672        1529 :     Py_DECREF(asciidig);
    2673        1529 :     Py_XDECREF(result);
    2674        1529 :     PyErr_Format(PyExc_ValueError,
    2675             :                  "invalid literal for int() with base %d: %.200R",
    2676             :                  base, u);
    2677        1529 :     return NULL;
    2678             : }
    2679             : 
    2680             : /* forward */
    2681             : static PyLongObject *x_divrem
    2682             :     (PyLongObject *, PyLongObject *, PyLongObject **);
    2683             : static PyObject *long_long(PyObject *v);
    2684             : 
    2685             : /* Int division with remainder, top-level routine */
    2686             : 
    2687             : static int
    2688     2153730 : long_divrem(PyLongObject *a, PyLongObject *b,
    2689             :             PyLongObject **pdiv, PyLongObject **prem)
    2690             : {
    2691     2153730 :     Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
    2692             :     PyLongObject *z;
    2693             : 
    2694     2153730 :     if (size_b == 0) {
    2695         279 :         PyErr_SetString(PyExc_ZeroDivisionError,
    2696             :                         "integer division or modulo by zero");
    2697         279 :         return -1;
    2698             :     }
    2699     2153450 :     if (size_a < size_b ||
    2700      250826 :         (size_a == size_b &&
    2701      250826 :          a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
    2702             :         /* |a| < |b|. */
    2703     1007870 :         *prem = (PyLongObject *)long_long((PyObject *)a);
    2704     1007870 :         if (*prem == NULL) {
    2705           0 :             return -1;
    2706             :         }
    2707     1007870 :         PyObject *zero = _PyLong_GetZero();
    2708     1007870 :         Py_INCREF(zero);
    2709     1007870 :         *pdiv = (PyLongObject*)zero;
    2710     1007870 :         return 0;
    2711             :     }
    2712     1145580 :     if (size_b == 1) {
    2713      561371 :         digit rem = 0;
    2714      561371 :         z = divrem1(a, b->ob_digit[0], &rem);
    2715      561371 :         if (z == NULL)
    2716           0 :             return -1;
    2717      561371 :         *prem = (PyLongObject *) PyLong_FromLong((long)rem);
    2718      561371 :         if (*prem == NULL) {
    2719           0 :             Py_DECREF(z);
    2720           0 :             return -1;
    2721             :         }
    2722             :     }
    2723             :     else {
    2724      584214 :         z = x_divrem(a, b, prem);
    2725      584214 :         *prem = maybe_small_long(*prem);
    2726      584214 :         if (z == NULL)
    2727           0 :             return -1;
    2728             :     }
    2729             :     /* Set the signs.
    2730             :        The quotient z has the sign of a*b;
    2731             :        the remainder r has the sign of a,
    2732             :        so a = b*z + r. */
    2733     1145580 :     if ((Py_SIZE(a) < 0) != (Py_SIZE(b) < 0)) {
    2734      226002 :         _PyLong_Negate(&z);
    2735      226002 :         if (z == NULL) {
    2736           0 :             Py_CLEAR(*prem);
    2737           0 :             return -1;
    2738             :         }
    2739             :     }
    2740     1145580 :     if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) {
    2741      173833 :         _PyLong_Negate(prem);
    2742      173833 :         if (*prem == NULL) {
    2743           0 :             Py_DECREF(z);
    2744           0 :             Py_CLEAR(*prem);
    2745           0 :             return -1;
    2746             :         }
    2747             :     }
    2748     1145580 :     *pdiv = maybe_small_long(z);
    2749     1145580 :     return 0;
    2750             : }
    2751             : 
    2752             : /* Int remainder, top-level routine */
    2753             : 
    2754             : static int
    2755     2811250 : long_rem(PyLongObject *a, PyLongObject *b, PyLongObject **prem)
    2756             : {
    2757     2811250 :     Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
    2758             : 
    2759     2811250 :     if (size_b == 0) {
    2760           6 :         PyErr_SetString(PyExc_ZeroDivisionError,
    2761             :                         "integer modulo by zero");
    2762           6 :         return -1;
    2763             :     }
    2764     2811240 :     if (size_a < size_b ||
    2765      102600 :         (size_a == size_b &&
    2766      102600 :          a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
    2767             :         /* |a| < |b|. */
    2768      259931 :         *prem = (PyLongObject *)long_long((PyObject *)a);
    2769      259931 :         return -(*prem == NULL);
    2770             :     }
    2771     2551310 :     if (size_b == 1) {
    2772      597915 :         *prem = rem1(a, b->ob_digit[0]);
    2773      597915 :         if (*prem == NULL)
    2774           0 :             return -1;
    2775             :     }
    2776             :     else {
    2777             :         /* Slow path using divrem. */
    2778     1953400 :         Py_XDECREF(x_divrem(a, b, prem));
    2779     1953400 :         *prem = maybe_small_long(*prem);
    2780     1953400 :         if (*prem == NULL)
    2781           0 :             return -1;
    2782             :     }
    2783             :     /* Set the sign. */
    2784     2551310 :     if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) {
    2785        3453 :         _PyLong_Negate(prem);
    2786        3453 :         if (*prem == NULL) {
    2787           0 :             Py_CLEAR(*prem);
    2788           0 :             return -1;
    2789             :         }
    2790             :     }
    2791     2551310 :     return 0;
    2792             : }
    2793             : 
    2794             : /* Unsigned int division with remainder -- the algorithm.  The arguments v1
    2795             :    and w1 should satisfy 2 <= Py_ABS(Py_SIZE(w1)) <= Py_ABS(Py_SIZE(v1)). */
    2796             : 
    2797             : static PyLongObject *
    2798     2631090 : x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
    2799             : {
    2800             :     PyLongObject *v, *w, *a;
    2801             :     Py_ssize_t i, k, size_v, size_w;
    2802             :     int d;
    2803             :     digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
    2804             :     twodigits vv;
    2805             :     sdigit zhi;
    2806             :     stwodigits z;
    2807             : 
    2808             :     /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
    2809             :        edn.), section 4.3.1, Algorithm D], except that we don't explicitly
    2810             :        handle the special case when the initial estimate q for a quotient
    2811             :        digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
    2812             :        that won't overflow a digit. */
    2813             : 
    2814             :     /* allocate space; w will also be used to hold the final remainder */
    2815     2631090 :     size_v = Py_ABS(Py_SIZE(v1));
    2816     2631090 :     size_w = Py_ABS(Py_SIZE(w1));
    2817     2631090 :     assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
    2818     2631090 :     v = _PyLong_New(size_v+1);
    2819     2631090 :     if (v == NULL) {
    2820           0 :         *prem = NULL;
    2821           0 :         return NULL;
    2822             :     }
    2823     2631090 :     w = _PyLong_New(size_w);
    2824     2631090 :     if (w == NULL) {
    2825           0 :         Py_DECREF(v);
    2826           0 :         *prem = NULL;
    2827           0 :         return NULL;
    2828             :     }
    2829             : 
    2830             :     /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
    2831             :        shift v1 left by the same amount.  Results go into w and v. */
    2832     2631090 :     d = PyLong_SHIFT - bit_length_digit(w1->ob_digit[size_w-1]);
    2833     2631090 :     carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d);
    2834     2631090 :     assert(carry == 0);
    2835     2631090 :     carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d);
    2836     2631090 :     if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) {
    2837     2278080 :         v->ob_digit[size_v] = carry;
    2838     2278080 :         size_v++;
    2839             :     }
    2840             : 
    2841             :     /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
    2842             :        at most (and usually exactly) k = size_v - size_w digits. */
    2843     2631090 :     k = size_v - size_w;
    2844     2631090 :     assert(k >= 0);
    2845     2631090 :     a = _PyLong_New(k);
    2846     2631090 :     if (a == NULL) {
    2847           0 :         Py_DECREF(w);
    2848           0 :         Py_DECREF(v);
    2849           0 :         *prem = NULL;
    2850           0 :         return NULL;
    2851             :     }
    2852     2631090 :     v0 = v->ob_digit;
    2853     2631090 :     w0 = w->ob_digit;
    2854     2631090 :     wm1 = w0[size_w-1];
    2855     2631090 :     wm2 = w0[size_w-2];
    2856     7921700 :     for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) {
    2857             :         /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
    2858             :            single-digit quotient q, remainder in vk[0:size_w]. */
    2859             : 
    2860     5290610 :         SIGCHECK({
    2861             :                 Py_DECREF(a);
    2862             :                 Py_DECREF(w);
    2863             :                 Py_DECREF(v);
    2864             :                 *prem = NULL;
    2865             :                 return NULL;
    2866             :             });
    2867             : 
    2868             :         /* estimate quotient digit q; may overestimate by 1 (rare) */
    2869     5290610 :         vtop = vk[size_w];
    2870     5290610 :         assert(vtop <= wm1);
    2871     5290610 :         vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
    2872             :         /* The code used to compute the remainder via
    2873             :          *     r = (digit)(vv - (twodigits)wm1 * q);
    2874             :          * and compilers generally generated code to do the * and -.
    2875             :          * But modern processors generally compute q and r with a single
    2876             :          * instruction, and modern optimizing compilers exploit that if we
    2877             :          * _don't_ try to optimize it.
    2878             :          */
    2879     5290610 :         q = (digit)(vv / wm1);
    2880     5290610 :         r = (digit)(vv % wm1);
    2881     5290610 :         while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
    2882     5500940 :                                      | vk[size_w-2])) {
    2883      314125 :             --q;
    2884      314125 :             r += wm1;
    2885      314125 :             if (r >= PyLong_BASE)
    2886      103789 :                 break;
    2887             :         }
    2888     5290610 :         assert(q <= PyLong_BASE);
    2889             : 
    2890             :         /* subtract q*w0[0:size_w] from vk[0:size_w+1] */
    2891     5290610 :         zhi = 0;
    2892    28741000 :         for (i = 0; i < size_w; ++i) {
    2893             :             /* invariants: -PyLong_BASE <= -q <= zhi <= 0;
    2894             :                -PyLong_BASE * q <= z < PyLong_BASE */
    2895    23450300 :             z = (sdigit)vk[i] + zhi -
    2896    23450300 :                 (stwodigits)q * (stwodigits)w0[i];
    2897    23450300 :             vk[i] = (digit)z & PyLong_MASK;
    2898    23450300 :             zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
    2899             :                                                     z, PyLong_SHIFT);
    2900             :         }
    2901             : 
    2902             :         /* add w back if q was too large (this branch taken rarely) */
    2903     5290610 :         assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
    2904     5290610 :         if ((sdigit)vtop + zhi < 0) {
    2905         411 :             carry = 0;
    2906        2967 :             for (i = 0; i < size_w; ++i) {
    2907        2556 :                 carry += vk[i] + w0[i];
    2908        2556 :                 vk[i] = carry & PyLong_MASK;
    2909        2556 :                 carry >>= PyLong_SHIFT;
    2910             :             }
    2911         411 :             --q;
    2912             :         }
    2913             : 
    2914             :         /* store quotient digit */
    2915     5290610 :         assert(q < PyLong_BASE);
    2916     5290610 :         *--ak = q;
    2917             :     }
    2918             : 
    2919             :     /* unshift remainder; we reuse w to store the result */
    2920     2631090 :     carry = v_rshift(w0, v0, size_w, d);
    2921     2631090 :     assert(carry==0);
    2922     2631090 :     Py_DECREF(v);
    2923             : 
    2924     2631090 :     *prem = long_normalize(w);
    2925     2631090 :     return long_normalize(a);
    2926             : }
    2927             : 
    2928             : /* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
    2929             :    abs(x) < 1.0 and e >= 0; return x and put e in *e.  Here x is
    2930             :    rounded to DBL_MANT_DIG significant bits using round-half-to-even.
    2931             :    If a == 0, return 0.0 and set *e = 0.  If the resulting exponent
    2932             :    e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
    2933             :    -1.0. */
    2934             : 
    2935             : /* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
    2936             : #if DBL_MANT_DIG == 53
    2937             : #define EXP2_DBL_MANT_DIG 9007199254740992.0
    2938             : #else
    2939             : #define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
    2940             : #endif
    2941             : 
    2942             : double
    2943      147171 : _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
    2944             : {
    2945             :     Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
    2946             :     /* See below for why x_digits is always large enough. */
    2947             :     digit rem;
    2948      147171 :     digit x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT] = {0,};
    2949             :     double dx;
    2950             :     /* Correction term for round-half-to-even rounding.  For a digit x,
    2951             :        "x + half_even_correction[x & 7]" gives x rounded to the nearest
    2952             :        multiple of 4, rounding ties to a multiple of 8. */
    2953             :     static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
    2954             : 
    2955      147171 :     a_size = Py_ABS(Py_SIZE(a));
    2956      147171 :     if (a_size == 0) {
    2957             :         /* Special case for 0: significand 0.0, exponent 0. */
    2958           0 :         *e = 0;
    2959           0 :         return 0.0;
    2960             :     }
    2961      147171 :     a_bits = bit_length_digit(a->ob_digit[a_size-1]);
    2962             :     /* The following is an overflow-free version of the check
    2963             :        "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
    2964      147171 :     if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
    2965           0 :         (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
    2966             :          a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
    2967           0 :         goto overflow;
    2968      147171 :     a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
    2969             : 
    2970             :     /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
    2971             :        (shifting left if a_bits <= DBL_MANT_DIG + 2).
    2972             : 
    2973             :        Number of digits needed for result: write // for floor division.
    2974             :        Then if shifting left, we end up using
    2975             : 
    2976             :          1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
    2977             : 
    2978             :        digits.  If shifting right, we use
    2979             : 
    2980             :          a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
    2981             : 
    2982             :        digits.  Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
    2983             :        the inequalities
    2984             : 
    2985             :          m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
    2986             :          m // PyLong_SHIFT - n // PyLong_SHIFT <=
    2987             :                                           1 + (m - n - 1) // PyLong_SHIFT,
    2988             : 
    2989             :        valid for any integers m and n, we find that x_size satisfies
    2990             : 
    2991             :          x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
    2992             : 
    2993             :        in both cases.
    2994             :     */
    2995      147171 :     if (a_bits <= DBL_MANT_DIG + 2) {
    2996       95459 :         shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
    2997       95459 :         shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
    2998       95459 :         x_size = shift_digits;
    2999       95459 :         rem = v_lshift(x_digits + x_size, a->ob_digit, a_size,
    3000             :                        (int)shift_bits);
    3001       95459 :         x_size += a_size;
    3002       95459 :         x_digits[x_size++] = rem;
    3003             :     }
    3004             :     else {
    3005       51712 :         shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
    3006       51712 :         shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
    3007       51712 :         rem = v_rshift(x_digits, a->ob_digit + shift_digits,
    3008             :                        a_size - shift_digits, (int)shift_bits);
    3009       51712 :         x_size = a_size - shift_digits;
    3010             :         /* For correct rounding below, we need the least significant
    3011             :            bit of x to be 'sticky' for this shift: if any of the bits
    3012             :            shifted out was nonzero, we set the least significant bit
    3013             :            of x. */
    3014       51712 :         if (rem)
    3015       33165 :             x_digits[0] |= 1;
    3016             :         else
    3017      162820 :             while (shift_digits > 0)
    3018      144927 :                 if (a->ob_digit[--shift_digits]) {
    3019         654 :                     x_digits[0] |= 1;
    3020         654 :                     break;
    3021             :                 }
    3022             :     }
    3023      147171 :     assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits));
    3024             : 
    3025             :     /* Round, and convert to double. */
    3026      147171 :     x_digits[0] += half_even_correction[x_digits[0] & 7];
    3027      147171 :     dx = x_digits[--x_size];
    3028      428313 :     while (x_size > 0)
    3029      281142 :         dx = dx * PyLong_BASE + x_digits[--x_size];
    3030             : 
    3031             :     /* Rescale;  make correction if result is 1.0. */
    3032      147171 :     dx /= 4.0 * EXP2_DBL_MANT_DIG;
    3033      147171 :     if (dx == 1.0) {
    3034        2299 :         if (a_bits == PY_SSIZE_T_MAX)
    3035           0 :             goto overflow;
    3036        2299 :         dx = 0.5;
    3037        2299 :         a_bits += 1;
    3038             :     }
    3039             : 
    3040      147171 :     *e = a_bits;
    3041      147171 :     return Py_SIZE(a) < 0 ? -dx : dx;
    3042             : 
    3043           0 :   overflow:
    3044             :     /* exponent > PY_SSIZE_T_MAX */
    3045           0 :     PyErr_SetString(PyExc_OverflowError,
    3046             :                     "huge integer: number of bits overflows a Py_ssize_t");
    3047           0 :     *e = 0;
    3048           0 :     return -1.0;
    3049             : }
    3050             : 
    3051             : /* Get a C double from an int object.  Rounds to the nearest double,
    3052             :    using the round-half-to-even rule in the case of a tie. */
    3053             : 
    3054             : double
    3055     7223120 : PyLong_AsDouble(PyObject *v)
    3056             : {
    3057             :     Py_ssize_t exponent;
    3058             :     double x;
    3059             : 
    3060     7223120 :     if (v == NULL) {
    3061           0 :         PyErr_BadInternalCall();
    3062           0 :         return -1.0;
    3063             :     }
    3064     7223120 :     if (!PyLong_Check(v)) {
    3065           1 :         PyErr_SetString(PyExc_TypeError, "an integer is required");
    3066           1 :         return -1.0;
    3067             :     }
    3068     7223120 :     if (IS_MEDIUM_VALUE(v)) {
    3069             :         /* Fast path; single digit long (31 bits) will cast safely
    3070             :            to double.  This improves performance of FP/long operations
    3071             :            by 20%.
    3072             :         */
    3073     7075960 :         return (double)medium_value((PyLongObject *)v);
    3074             :     }
    3075      147163 :     x = _PyLong_Frexp((PyLongObject *)v, &exponent);
    3076      147163 :     if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
    3077          90 :         PyErr_SetString(PyExc_OverflowError,
    3078             :                         "int too large to convert to float");
    3079          90 :         return -1.0;
    3080             :     }
    3081      147073 :     return ldexp(x, (int)exponent);
    3082             : }
    3083             : 
    3084             : /* Methods */
    3085             : 
    3086             : /* if a < b, return a negative number
    3087             :    if a == b, return 0
    3088             :    if a > b, return a positive number */
    3089             : 
    3090             : static Py_ssize_t
    3091    78994700 : long_compare(PyLongObject *a, PyLongObject *b)
    3092             : {
    3093    78994700 :     Py_ssize_t sign = Py_SIZE(a) - Py_SIZE(b);
    3094    78994700 :     if (sign == 0) {
    3095    62301300 :         Py_ssize_t i = Py_ABS(Py_SIZE(a));
    3096    62301300 :         sdigit diff = 0;
    3097    84819200 :         while (--i >= 0) {
    3098    71135100 :             diff = (sdigit) a->ob_digit[i] - (sdigit) b->ob_digit[i];
    3099    71135100 :             if (diff) {
    3100    48617300 :                 break;
    3101             :             }
    3102             :         }
    3103    62301300 :         sign = Py_SIZE(a) < 0 ? -diff : diff;
    3104             :     }
    3105    78994700 :     return sign;
    3106             : }
    3107             : 
    3108             : static PyObject *
    3109    87879800 : long_richcompare(PyObject *self, PyObject *other, int op)
    3110             : {
    3111             :     Py_ssize_t result;
    3112    87879800 :     CHECK_BINOP(self, other);
    3113    87242900 :     if (self == other)
    3114     8469250 :         result = 0;
    3115             :     else
    3116    78773700 :         result = long_compare((PyLongObject*)self, (PyLongObject*)other);
    3117    87242900 :     Py_RETURN_RICHCOMPARE(result, 0, op);
    3118             : }
    3119             : 
    3120             : static Py_hash_t
    3121    58054400 : long_hash(PyLongObject *v)
    3122             : {
    3123             :     Py_uhash_t x;
    3124             :     Py_ssize_t i;
    3125             :     int sign;
    3126             : 
    3127    58054400 :     i = Py_SIZE(v);
    3128    58054400 :     switch(i) {
    3129      319629 :     case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0];
    3130     3763660 :     case 0: return 0;
    3131    45189600 :     case 1: return v->ob_digit[0];
    3132             :     }
    3133     8781510 :     sign = 1;
    3134     8781510 :     x = 0;
    3135     8781510 :     if (i < 0) {
    3136       15191 :         sign = -1;
    3137       15191 :         i = -(i);
    3138             :     }
    3139    26889700 :     while (--i >= 0) {
    3140             :         /* Here x is a quantity in the range [0, _PyHASH_MODULUS); we
    3141             :            want to compute x * 2**PyLong_SHIFT + v->ob_digit[i] modulo
    3142             :            _PyHASH_MODULUS.
    3143             : 
    3144             :            The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS
    3145             :            amounts to a rotation of the bits of x.  To see this, write
    3146             : 
    3147             :              x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z
    3148             : 
    3149             :            where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top
    3150             :            PyLong_SHIFT bits of x (those that are shifted out of the
    3151             :            original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
    3152             :            _PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT
    3153             :            bits of x, shifted up.  Then since 2**_PyHASH_BITS is
    3154             :            congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is
    3155             :            congruent to y modulo _PyHASH_MODULUS.  So
    3156             : 
    3157             :              x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS).
    3158             : 
    3159             :            The right-hand side is just the result of rotating the
    3160             :            _PyHASH_BITS bits of x left by PyLong_SHIFT places; since
    3161             :            not all _PyHASH_BITS bits of x are 1s, the same is true
    3162             :            after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is
    3163             :            the reduction of x*2**PyLong_SHIFT modulo
    3164             :            _PyHASH_MODULUS. */
    3165    18108200 :         x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) |
    3166    18108200 :             (x >> (_PyHASH_BITS - PyLong_SHIFT));
    3167    18108200 :         x += v->ob_digit[i];
    3168    18108200 :         if (x >= _PyHASH_MODULUS)
    3169        3075 :             x -= _PyHASH_MODULUS;
    3170             :     }
    3171     8781510 :     x = x * sign;
    3172     8781510 :     if (x == (Py_uhash_t)-1)
    3173          13 :         x = (Py_uhash_t)-2;
    3174     8781510 :     return (Py_hash_t)x;
    3175             : }
    3176             : 
    3177             : 
    3178             : /* Add the absolute values of two integers. */
    3179             : 
    3180             : static PyLongObject *
    3181     6177930 : x_add(PyLongObject *a, PyLongObject *b)
    3182             : {
    3183     6177930 :     Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
    3184             :     PyLongObject *z;
    3185             :     Py_ssize_t i;
    3186     6177930 :     digit carry = 0;
    3187             : 
    3188             :     /* Ensure a is the larger of the two: */
    3189     6177930 :     if (size_a < size_b) {
    3190      298988 :         { PyLongObject *temp = a; a = b; b = temp; }
    3191      298988 :         { Py_ssize_t size_temp = size_a;
    3192      298988 :             size_a = size_b;
    3193      298988 :             size_b = size_temp; }
    3194             :     }
    3195     6177930 :     z = _PyLong_New(size_a+1);
    3196     6177930 :     if (z == NULL)
    3197           0 :         return NULL;
    3198    15588700 :     for (i = 0; i < size_b; ++i) {
    3199     9410780 :         carry += a->ob_digit[i] + b->ob_digit[i];
    3200     9410780 :         z->ob_digit[i] = carry & PyLong_MASK;
    3201     9410780 :         carry >>= PyLong_SHIFT;
    3202             :     }
    3203    20176700 :     for (; i < size_a; ++i) {
    3204    13998800 :         carry += a->ob_digit[i];
    3205    13998800 :         z->ob_digit[i] = carry & PyLong_MASK;
    3206    13998800 :         carry >>= PyLong_SHIFT;
    3207             :     }
    3208     6177930 :     z->ob_digit[i] = carry;
    3209     6177930 :     return long_normalize(z);
    3210             : }
    3211             : 
    3212             : /* Subtract the absolute values of two integers. */
    3213             : 
    3214             : static PyLongObject *
    3215     2382730 : x_sub(PyLongObject *a, PyLongObject *b)
    3216             : {
    3217     2382730 :     Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
    3218             :     PyLongObject *z;
    3219             :     Py_ssize_t i;
    3220     2382730 :     int sign = 1;
    3221     2382730 :     digit borrow = 0;
    3222             : 
    3223             :     /* Ensure a is the larger of the two: */
    3224     2382730 :     if (size_a < size_b) {
    3225      782968 :         sign = -1;
    3226      782968 :         { PyLongObject *temp = a; a = b; b = temp; }
    3227      782968 :         { Py_ssize_t size_temp = size_a;
    3228      782968 :             size_a = size_b;
    3229      782968 :             size_b = size_temp; }
    3230             :     }
    3231     1599760 :     else if (size_a == size_b) {
    3232             :         /* Find highest digit where a and b differ: */
    3233      295367 :         i = size_a;
    3234      623978 :         while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
    3235             :             ;
    3236      295367 :         if (i < 0)
    3237        6034 :             return (PyLongObject *)PyLong_FromLong(0);
    3238      289333 :         if (a->ob_digit[i] < b->ob_digit[i]) {
    3239       77548 :             sign = -1;
    3240       77548 :             { PyLongObject *temp = a; a = b; b = temp; }
    3241             :         }
    3242      289333 :         size_a = size_b = i+1;
    3243             :     }
    3244     2376700 :     z = _PyLong_New(size_a);
    3245     2376700 :     if (z == NULL)
    3246           0 :         return NULL;
    3247     7285420 :     for (i = 0; i < size_b; ++i) {
    3248             :         /* The following assumes unsigned arithmetic
    3249             :            works module 2**N for some N>PyLong_SHIFT. */
    3250     4908720 :         borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
    3251     4908720 :         z->ob_digit[i] = borrow & PyLong_MASK;
    3252     4908720 :         borrow >>= PyLong_SHIFT;
    3253     4908720 :         borrow &= 1; /* Keep only one sign bit */
    3254             :     }
    3255     8233260 :     for (; i < size_a; ++i) {
    3256     5856560 :         borrow = a->ob_digit[i] - borrow;
    3257     5856560 :         z->ob_digit[i] = borrow & PyLong_MASK;
    3258     5856560 :         borrow >>= PyLong_SHIFT;
    3259     5856560 :         borrow &= 1; /* Keep only one sign bit */
    3260             :     }
    3261     2376700 :     assert(borrow == 0);
    3262     2376700 :     if (sign < 0) {
    3263      860516 :         Py_SET_SIZE(z, -Py_SIZE(z));
    3264             :     }
    3265     2376700 :     return maybe_small_long(long_normalize(z));
    3266             : }
    3267             : 
    3268             : PyObject *
    3269    55293200 : _PyLong_Add(PyLongObject *a, PyLongObject *b)
    3270             : {
    3271    55293200 :     if (IS_MEDIUM_VALUE(a) && IS_MEDIUM_VALUE(b)) {
    3272    47678800 :         return _PyLong_FromSTwoDigits(medium_value(a) + medium_value(b));
    3273             :     }
    3274             : 
    3275             :     PyLongObject *z;
    3276     7614430 :     if (Py_SIZE(a) < 0) {
    3277     1262870 :         if (Py_SIZE(b) < 0) {
    3278      291773 :             z = x_add(a, b);
    3279      291773 :             if (z != NULL) {
    3280             :                 /* x_add received at least one multiple-digit int,
    3281             :                    and thus z must be a multiple-digit int.
    3282             :                    That also means z is not an element of
    3283             :                    small_ints, so negating it in-place is safe. */
    3284      291773 :                 assert(Py_REFCNT(z) == 1);
    3285      291773 :                 Py_SET_SIZE(z, -(Py_SIZE(z)));
    3286             :             }
    3287             :         }
    3288             :         else
    3289      971100 :             z = x_sub(b, a);
    3290             :     }
    3291             :     else {
    3292     6351550 :         if (Py_SIZE(b) < 0)
    3293      782888 :             z = x_sub(a, b);
    3294             :         else
    3295     5568670 :             z = x_add(a, b);
    3296             :     }
    3297     7614430 :     return (PyObject *)z;
    3298             : }
    3299             : 
    3300             : static PyObject *
    3301    10546900 : long_add(PyLongObject *a, PyLongObject *b)
    3302             : {
    3303    10546900 :     CHECK_BINOP(a, b);
    3304    10203200 :     return _PyLong_Add(a, b);
    3305             : }
    3306             : 
    3307             : PyObject *
    3308    25295000 : _PyLong_Subtract(PyLongObject *a, PyLongObject *b)
    3309             : {
    3310             :     PyLongObject *z;
    3311             : 
    3312    25295000 :     if (IS_MEDIUM_VALUE(a) && IS_MEDIUM_VALUE(b)) {
    3313    24360000 :         return _PyLong_FromSTwoDigits(medium_value(a) - medium_value(b));
    3314             :     }
    3315      934964 :     if (Py_SIZE(a) < 0) {
    3316      132938 :         if (Py_SIZE(b) < 0) {
    3317       26248 :             z = x_sub(b, a);
    3318             :         }
    3319             :         else {
    3320      106690 :             z = x_add(a, b);
    3321      106690 :             if (z != NULL) {
    3322      106690 :                 assert(Py_SIZE(z) == 0 || Py_REFCNT(z) == 1);
    3323      106690 :                 Py_SET_SIZE(z, -(Py_SIZE(z)));
    3324             :             }
    3325             :         }
    3326             :     }
    3327             :     else {
    3328      802026 :         if (Py_SIZE(b) < 0)
    3329      199529 :             z = x_add(a, b);
    3330             :         else
    3331      602497 :             z = x_sub(a, b);
    3332             :     }
    3333      934964 :     return (PyObject *)z;
    3334             : }
    3335             : 
    3336             : static PyObject *
    3337     4742400 : long_sub(PyLongObject *a, PyLongObject *b)
    3338             : {
    3339     4742400 :     CHECK_BINOP(a, b);
    3340     4738290 :     return _PyLong_Subtract(a, b);
    3341             : }
    3342             : 
    3343             : /* Grade school multiplication, ignoring the signs.
    3344             :  * Returns the absolute value of the product, or NULL if error.
    3345             :  */
    3346             : static PyLongObject *
    3347     9722290 : x_mul(PyLongObject *a, PyLongObject *b)
    3348             : {
    3349             :     PyLongObject *z;
    3350     9722290 :     Py_ssize_t size_a = Py_ABS(Py_SIZE(a));
    3351     9722290 :     Py_ssize_t size_b = Py_ABS(Py_SIZE(b));
    3352             :     Py_ssize_t i;
    3353             : 
    3354     9722290 :     z = _PyLong_New(size_a + size_b);
    3355     9722290 :     if (z == NULL)
    3356           0 :         return NULL;
    3357             : 
    3358     9722290 :     memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit));
    3359     9722290 :     if (a == b) {
    3360             :         /* Efficient squaring per HAC, Algorithm 14.16:
    3361             :          * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
    3362             :          * Gives slightly less than a 2x speedup when a == b,
    3363             :          * via exploiting that each entry in the multiplication
    3364             :          * pyramid appears twice (except for the size_a squares).
    3365             :          */
    3366     2436390 :         digit *paend = a->ob_digit + size_a;
    3367    10350200 :         for (i = 0; i < size_a; ++i) {
    3368             :             twodigits carry;
    3369     7913840 :             twodigits f = a->ob_digit[i];
    3370     7913840 :             digit *pz = z->ob_digit + (i << 1);
    3371     7913840 :             digit *pa = a->ob_digit + i + 1;
    3372             : 
    3373     7913840 :             SIGCHECK({
    3374             :                     Py_DECREF(z);
    3375             :                     return NULL;
    3376             :                 });
    3377             : 
    3378     7913840 :             carry = *pz + f * f;
    3379     7913840 :             *pz++ = (digit)(carry & PyLong_MASK);
    3380     7913840 :             carry >>= PyLong_SHIFT;
    3381     7913840 :             assert(carry <= PyLong_MASK);
    3382             : 
    3383             :             /* Now f is added in twice in each column of the
    3384             :              * pyramid it appears.  Same as adding f<<1 once.
    3385             :              */
    3386     7913840 :             f <<= 1;
    3387    82278100 :             while (pa < paend) {
    3388    74364200 :                 carry += *pz + *pa++ * f;
    3389    74364200 :                 *pz++ = (digit)(carry & PyLong_MASK);
    3390    74364200 :                 carry >>= PyLong_SHIFT;
    3391    74364200 :                 assert(carry <= (PyLong_MASK << 1));
    3392             :             }
    3393     7913840 :             if (carry) {
    3394             :                 /* See comment below. pz points at the highest possible
    3395             :                  * carry position from the last outer loop iteration, so
    3396             :                  * *pz is at most 1.
    3397             :                  */
    3398     3151170 :                 assert(*pz <= 1);
    3399     3151170 :                 carry += *pz;
    3400     3151170 :                 *pz = (digit)(carry & PyLong_MASK);
    3401     3151170 :                 carry >>= PyLong_SHIFT;
    3402     3151170 :                 if (carry) {
    3403             :                     /* If there's still a carry, it must be into a position
    3404             :                      * that still holds a 0. Where the base
    3405             :                      ^ B is 1 << PyLong_SHIFT, the last add was of a carry no
    3406             :                      * more than 2*B - 2 to a stored digit no more than 1.
    3407             :                      * So the sum was no more than 2*B - 1, so the current
    3408             :                      * carry no more than floor((2*B - 1)/B) = 1.
    3409             :                      */
    3410       24399 :                     assert(carry == 1);
    3411       24399 :                     assert(pz[1] == 0);
    3412       24399 :                     pz[1] = (digit)carry;
    3413             :                 }
    3414             :             }
    3415             :         }
    3416             :     }
    3417             :     else {      /* a is not the same as b -- gradeschool int mult */
    3418    19862700 :         for (i = 0; i < size_a; ++i) {
    3419    12576800 :             twodigits carry = 0;
    3420    12576800 :             twodigits f = a->ob_digit[i];
    3421    12576800 :             digit *pz = z->ob_digit + i;
    3422    12576800 :             digit *pb = b->ob_digit;
    3423    12576800 :             digit *pbend = b->ob_digit + size_b;
    3424             : 
    3425    12576800 :             SIGCHECK({
    3426             :                     Py_DECREF(z);
    3427             :                     return NULL;
    3428             :                 });
    3429             : 
    3430   269129000 :             while (pb < pbend) {
    3431   256552000 :                 carry += *pz + *pb++ * f;
    3432   256552000 :                 *pz++ = (digit)(carry & PyLong_MASK);
    3433   256552000 :                 carry >>= PyLong_SHIFT;
    3434   256552000 :                 assert(carry <= PyLong_MASK);
    3435             :             }
    3436    12576800 :             if (carry)
    3437     9257040 :                 *pz += (digit)(carry & PyLong_MASK);
    3438    12576800 :             assert((carry >> PyLong_SHIFT) == 0);
    3439             :         }
    3440             :     }
    3441     9722290 :     return long_normalize(z);
    3442             : }
    3443             : 
    3444             : /* A helper for Karatsuba multiplication (k_mul).
    3445             :    Takes an int "n" and an integer "size" representing the place to
    3446             :    split, and sets low and high such that abs(n) == (high << size) + low,
    3447             :    viewing the shift as being by digits.  The sign bit is ignored, and
    3448             :    the return values are >= 0.
    3449             :    Returns 0 on success, -1 on failure.
    3450             : */
    3451             : static int
    3452       11274 : kmul_split(PyLongObject *n,
    3453             :            Py_ssize_t size,
    3454             :            PyLongObject **high,
    3455             :            PyLongObject **low)
    3456             : {
    3457             :     PyLongObject *hi, *lo;
    3458             :     Py_ssize_t size_lo, size_hi;
    3459       11274 :     const Py_ssize_t size_n = Py_ABS(Py_SIZE(n));
    3460             : 
    3461       11274 :     size_lo = Py_MIN(size_n, size);
    3462       11274 :     size_hi = size_n - size_lo;
    3463             : 
    3464       11274 :     if ((hi = _PyLong_New(size_hi)) == NULL)
    3465           0 :         return -1;
    3466       11274 :     if ((lo = _PyLong_New(size_lo)) == NULL) {
    3467           0 :         Py_DECREF(hi);
    3468           0 :         return -1;
    3469             :     }
    3470             : 
    3471       11274 :     memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
    3472       11274 :     memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
    3473             : 
    3474       11274 :     *high = long_normalize(hi);
    3475       11274 :     *low = long_normalize(lo);
    3476       11274 :     return 0;
    3477             : }
    3478             : 
    3479             : static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
    3480             : 
    3481             : /* Karatsuba multiplication.  Ignores the input signs, and returns the
    3482             :  * absolute value of the product (or NULL if error).
    3483             :  * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
    3484             :  */
    3485             : static PyLongObject *
    3486     9747150 : k_mul(PyLongObject *a, PyLongObject *b)
    3487             : {
    3488     9747150 :     Py_ssize_t asize = Py_ABS(Py_SIZE(a));
    3489     9747150 :     Py_ssize_t bsize = Py_ABS(Py_SIZE(b));
    3490     9747150 :     PyLongObject *ah = NULL;
    3491     9747150 :     PyLongObject *al = NULL;
    3492     9747150 :     PyLongObject *bh = NULL;
    3493     9747150 :     PyLongObject *bl = NULL;
    3494     9747150 :     PyLongObject *ret = NULL;
    3495             :     PyLongObject *t1, *t2, *t3;
    3496             :     Py_ssize_t shift;           /* the number of digits we split off */
    3497             :     Py_ssize_t i;
    3498             : 
    3499             :     /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
    3500             :      * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl
    3501             :      * Then the original product is
    3502             :      *     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
    3503             :      * By picking X to be a power of 2, "*X" is just shifting, and it's
    3504             :      * been reduced to 3 multiplies on numbers half the size.
    3505             :      */
    3506             : 
    3507             :     /* We want to split based on the larger number; fiddle so that b
    3508             :      * is largest.
    3509             :      */
    3510     9747150 :     if (asize > bsize) {
    3511     5196130 :         t1 = a;
    3512     5196130 :         a = b;
    3513     5196130 :         b = t1;
    3514             : 
    3515     5196130 :         i = asize;
    3516     5196130 :         asize = bsize;
    3517     5196130 :         bsize = i;
    3518             :     }
    3519             : 
    3520             :     /* Use gradeschool math when either number is too small. */
    3521     9747150 :     i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
    3522     9747150 :     if (asize <= i) {
    3523     9740150 :         if (asize == 0)
    3524       17860 :             return (PyLongObject *)PyLong_FromLong(0);
    3525             :         else
    3526     9722290 :             return x_mul(a, b);
    3527             :     }
    3528             : 
    3529             :     /* If a is small compared to b, splitting on b gives a degenerate
    3530             :      * case with ah==0, and Karatsuba may be (even much) less efficient
    3531             :      * than "grade school" then.  However, we can still win, by viewing
    3532             :      * b as a string of "big digits", each of width a->ob_size.  That
    3533             :      * leads to a sequence of balanced calls to k_mul.
    3534             :      */
    3535        7001 :     if (2 * asize <= bsize)
    3536          72 :         return k_lopsided_mul(a, b);
    3537             : 
    3538             :     /* Split a & b into hi & lo pieces. */
    3539        6929 :     shift = bsize >> 1;
    3540        6929 :     if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
    3541        6929 :     assert(Py_SIZE(ah) > 0);            /* the split isn't degenerate */
    3542             : 
    3543        6929 :     if (a == b) {
    3544        2584 :         bh = ah;
    3545        2584 :         bl = al;
    3546        2584 :         Py_INCREF(bh);
    3547        2584 :         Py_INCREF(bl);
    3548             :     }
    3549        4345 :     else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
    3550             : 
    3551             :     /* The plan:
    3552             :      * 1. Allocate result space (asize + bsize digits:  that's always
    3553             :      *    enough).
    3554             :      * 2. Compute ah*bh, and copy into result at 2*shift.
    3555             :      * 3. Compute al*bl, and copy into result at 0.  Note that this
    3556             :      *    can't overlap with #2.
    3557             :      * 4. Subtract al*bl from the result, starting at shift.  This may
    3558             :      *    underflow (borrow out of the high digit), but we don't care:
    3559             :      *    we're effectively doing unsigned arithmetic mod
    3560             :      *    BASE**(sizea + sizeb), and so long as the *final* result fits,
    3561             :      *    borrows and carries out of the high digit can be ignored.
    3562             :      * 5. Subtract ah*bh from the result, starting at shift.
    3563             :      * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
    3564             :      *    at shift.
    3565             :      */
    3566             : 
    3567             :     /* 1. Allocate result space. */
    3568        6929 :     ret = _PyLong_New(asize + bsize);
    3569        6929 :     if (ret == NULL) goto fail;
    3570             : #ifdef Py_DEBUG
    3571             :     /* Fill with trash, to catch reference to uninitialized digits. */
    3572        6929 :     memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit));
    3573             : #endif
    3574             : 
    3575             :     /* 2. t1 <- ah*bh, and copy into high digits of result. */
    3576        6929 :     if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
    3577        6929 :     assert(Py_SIZE(t1) >= 0);
    3578        6929 :     assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret));
    3579        6929 :     memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
    3580        6929 :            Py_SIZE(t1) * sizeof(digit));
    3581             : 
    3582             :     /* Zero-out the digits higher than the ah*bh copy. */
    3583        6929 :     i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1);
    3584        6929 :     if (i)
    3585        2986 :         memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0,
    3586             :                i * sizeof(digit));
    3587             : 
    3588             :     /* 3. t2 <- al*bl, and copy into the low digits. */
    3589        6929 :     if ((t2 = k_mul(al, bl)) == NULL) {
    3590           0 :         Py_DECREF(t1);
    3591           0 :         goto fail;
    3592             :     }
    3593        6929 :     assert(Py_SIZE(t2) >= 0);
    3594        6929 :     assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */
    3595        6929 :     memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit));
    3596             : 
    3597             :     /* Zero out remaining digits. */
    3598        6929 :     i = 2*shift - Py_SIZE(t2);          /* number of uninitialized digits */
    3599        6929 :     if (i)
    3600        2337 :         memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit));
    3601             : 
    3602             :     /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first
    3603             :      * because it's fresher in cache.
    3604             :      */
    3605        6929 :     i = Py_SIZE(ret) - shift;  /* # digits after shift */
    3606        6929 :     (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2));
    3607        6929 :     _Py_DECREF_INT(t2);
    3608             : 
    3609        6929 :     (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1));
    3610        6929 :     _Py_DECREF_INT(t1);
    3611             : 
    3612             :     /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
    3613        6929 :     if ((t1 = x_add(ah, al)) == NULL) goto fail;
    3614        6929 :     _Py_DECREF_INT(ah);
    3615        6929 :     _Py_DECREF_INT(al);
    3616        6929 :     ah = al = NULL;
    3617             : 
    3618        6929 :     if (a == b) {
    3619        2584 :         t2 = t1;
    3620        2584 :         Py_INCREF(t2);
    3621             :     }
    3622        4345 :     else if ((t2 = x_add(bh, bl)) == NULL) {
    3623           0 :         Py_DECREF(t1);
    3624           0 :         goto fail;
    3625             :     }
    3626        6929 :     _Py_DECREF_INT(bh);
    3627        6929 :     _Py_DECREF_INT(bl);
    3628        6929 :     bh = bl = NULL;
    3629             : 
    3630        6929 :     t3 = k_mul(t1, t2);
    3631        6929 :     _Py_DECREF_INT(t1);
    3632        6929 :     _Py_DECREF_INT(t2);
    3633        6929 :     if (t3 == NULL) goto fail;
    3634        6929 :     assert(Py_SIZE(t3) >= 0);
    3635             : 
    3636             :     /* Add t3.  It's not obvious why we can't run out of room here.
    3637             :      * See the (*) comment after this function.
    3638             :      */
    3639        6929 :     (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3));
    3640        6929 :     _Py_DECREF_INT(t3);
    3641             : 
    3642        6929 :     return long_normalize(ret);
    3643             : 
    3644           0 :   fail:
    3645           0 :     Py_XDECREF(ret);
    3646           0 :     Py_XDECREF(ah);
    3647           0 :     Py_XDECREF(al);
    3648           0 :     Py_XDECREF(bh);
    3649           0 :     Py_XDECREF(bl);
    3650           0 :     return NULL;
    3651             : }
    3652             : 
    3653             : /* (*) Why adding t3 can't "run out of room" above.
    3654             : 
    3655             : Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts
    3656             : to start with:
    3657             : 
    3658             : 1. For any integer i, i = c(i/2) + f(i/2).  In particular,
    3659             :    bsize = c(bsize/2) + f(bsize/2).
    3660             : 2. shift = f(bsize/2)
    3661             : 3. asize <= bsize
    3662             : 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
    3663             :    routine, so asize > bsize/2 >= f(bsize/2) in this routine.
    3664             : 
    3665             : We allocated asize + bsize result digits, and add t3 into them at an offset
    3666             : of shift.  This leaves asize+bsize-shift allocated digit positions for t3
    3667             : to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
    3668             : asize + c(bsize/2) available digit positions.
    3669             : 
    3670             : bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has
    3671             : at most c(bsize/2) digits + 1 bit.
    3672             : 
    3673             : If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
    3674             : digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at
    3675             : most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
    3676             : 
    3677             : The product (ah+al)*(bh+bl) therefore has at most
    3678             : 
    3679             :     c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
    3680             : 
    3681             : and we have asize + c(bsize/2) available digit positions.  We need to show
    3682             : this is always enough.  An instance of c(bsize/2) cancels out in both, so
    3683             : the question reduces to whether asize digits is enough to hold
    3684             : (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize,
    3685             : then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4,
    3686             : asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
    3687             : digit is enough to hold 2 bits.  This is so since PyLong_SHIFT=15 >= 2.  If
    3688             : asize == bsize, then we're asking whether bsize digits is enough to hold
    3689             : c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
    3690             : is enough to hold 2 bits.  This is so if bsize >= 2, which holds because
    3691             : bsize >= KARATSUBA_CUTOFF >= 2.
    3692             : 
    3693             : Note that since there's always enough room for (ah+al)*(bh+bl), and that's
    3694             : clearly >= each of ah*bh and al*bl, there's always enough room to subtract
    3695             : ah*bh and al*bl too.
    3696             : */
    3697             : 
    3698             : /* b has at least twice the digits of a, and a is big enough that Karatsuba
    3699             :  * would pay off *if* the inputs had balanced sizes.  View b as a sequence
    3700             :  * of slices, each with a->ob_size digits, and multiply the slices by a,
    3701             :  * one at a time.  This gives k_mul balanced inputs to work with, and is
    3702             :  * also cache-friendly (we compute one double-width slice of the result
    3703             :  * at a time, then move on, never backtracking except for the helpful
    3704             :  * single-width slice overlap between successive partial sums).
    3705             :  */
    3706             : static PyLongObject *
    3707          72 : k_lopsided_mul(PyLongObject *a, PyLongObject *b)
    3708             : {
    3709          72 :     const Py_ssize_t asize = Py_ABS(Py_SIZE(a));
    3710          72 :     Py_ssize_t bsize = Py_ABS(Py_SIZE(b));
    3711             :     Py_ssize_t nbdone;          /* # of b digits already multiplied */
    3712             :     PyLongObject *ret;
    3713          72 :     PyLongObject *bslice = NULL;
    3714             : 
    3715          72 :     assert(asize > KARATSUBA_CUTOFF);
    3716          72 :     assert(2 * asize <= bsize);
    3717             : 
    3718             :     /* Allocate result space, and zero it out. */
    3719          72 :     ret = _PyLong_New(asize + bsize);
    3720          72 :     if (ret == NULL)
    3721           0 :         return NULL;
    3722          72 :     memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit));
    3723             : 
    3724             :     /* Successive slices of b are copied into bslice. */
    3725          72 :     bslice = _PyLong_New(asize);
    3726          72 :     if (bslice == NULL)
    3727           0 :         goto fail;
    3728             : 
    3729          72 :     nbdone = 0;
    3730        1174 :     while (bsize > 0) {
    3731             :         PyLongObject *product;
    3732        1102 :         const Py_ssize_t nbtouse = Py_MIN(bsize, asize);
    3733             : 
    3734             :         /* Multiply the next slice of b by a. */
    3735        1102 :         memcpy(bslice->ob_digit, b->ob_digit + nbdone,
    3736             :                nbtouse * sizeof(digit));
    3737        1102 :         Py_SET_SIZE(bslice, nbtouse);
    3738        1102 :         product = k_mul(a, bslice);
    3739        1102 :         if (product == NULL)
    3740           0 :             goto fail;
    3741             : 
    3742             :         /* Add into result. */
    3743        2204 :         (void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone,
    3744        1102 :                      product->ob_digit, Py_SIZE(product));
    3745        1102 :         _Py_DECREF_INT(product);
    3746             : 
    3747        1102 :         bsize -= nbtouse;
    3748        1102 :         nbdone += nbtouse;
    3749             :     }
    3750             : 
    3751          72 :     _Py_DECREF_INT(bslice);
    3752          72 :     return long_normalize(ret);
    3753             : 
    3754           0 :   fail:
    3755           0 :     Py_DECREF(ret);
    3756           0 :     Py_XDECREF(bslice);
    3757           0 :     return NULL;
    3758             : }
    3759             : 
    3760             : PyObject *
    3761    19481300 : _PyLong_Multiply(PyLongObject *a, PyLongObject *b)
    3762             : {
    3763             :     PyLongObject *z;
    3764             : 
    3765             :     /* fast path for single-digit multiplication */
    3766    19481300 :     if (IS_MEDIUM_VALUE(a) && IS_MEDIUM_VALUE(b)) {
    3767     9756020 :         stwodigits v = medium_value(a) * medium_value(b);
    3768     9756020 :         return _PyLong_FromSTwoDigits(v);
    3769             :     }
    3770             : 
    3771     9725260 :     z = k_mul(a, b);
    3772             :     /* Negate if exactly one of the inputs is negative. */
    3773     9725260 :     if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z) {
    3774      130172 :         _PyLong_Negate(&z);
    3775      130172 :         if (z == NULL)
    3776           0 :             return NULL;
    3777             :     }
    3778     9725260 :     return (PyObject *)z;
    3779             : }
    3780             : 
    3781             : static PyObject *
    3782    16177300 : long_mul(PyLongObject *a, PyLongObject *b)
    3783             : {
    3784    16177300 :     CHECK_BINOP(a, b);
    3785    13786700 :     return _PyLong_Multiply(a, b);
    3786             : }
    3787             : 
    3788             : /* Fast modulo division for single-digit longs. */
    3789             : static PyObject *
    3790     1870880 : fast_mod(PyLongObject *a, PyLongObject *b)
    3791             : {
    3792     1870880 :     sdigit left = a->ob_digit[0];
    3793     1870880 :     sdigit right = b->ob_digit[0];
    3794             :     sdigit mod;
    3795             : 
    3796     1870880 :     assert(Py_ABS(Py_SIZE(a)) == 1);
    3797     1870880 :     assert(Py_ABS(Py_SIZE(b)) == 1);
    3798             : 
    3799     1870880 :     if (Py_SIZE(a) == Py_SIZE(b)) {
    3800             :         /* 'a' and 'b' have the same sign. */
    3801     1799950 :         mod = left % right;
    3802             :     }
    3803             :     else {
    3804             :         /* Either 'a' or 'b' is negative. */
    3805       70936 :         mod = right - 1 - (left - 1) % right;
    3806             :     }
    3807             : 
    3808     1870880 :     return PyLong_FromLong(mod * (sdigit)Py_SIZE(b));
    3809             : }
    3810             : 
    3811             : /* Fast floor division for single-digit longs. */
    3812             : static PyObject *
    3813     3005890 : fast_floor_div(PyLongObject *a, PyLongObject *b)
    3814             : {
    3815     3005890 :     sdigit left = a->ob_digit[0];
    3816     3005890 :     sdigit right = b->ob_digit[0];
    3817             :     sdigit div;
    3818             : 
    3819     3005890 :     assert(Py_ABS(Py_SIZE(a)) == 1);
    3820     3005890 :     assert(Py_ABS(Py_SIZE(b)) == 1);
    3821             : 
    3822     3005890 :     if (Py_SIZE(a) == Py_SIZE(b)) {
    3823             :         /* 'a' and 'b' have the same sign. */
    3824     2888520 :         div = left / right;
    3825             :     }
    3826             :     else {
    3827             :         /* Either 'a' or 'b' is negative. */
    3828      117366 :         div = -1 - (left - 1) / right;
    3829             :     }
    3830             : 
    3831     3005890 :     return PyLong_FromLong(div);
    3832             : }
    3833             : 
    3834             : /* The / and % operators are now defined in terms of divmod().
    3835             :    The expression a mod b has the value a - b*floor(a/b).
    3836             :    The long_divrem function gives the remainder after division of
    3837             :    |a| by |b|, with the sign of a.  This is also expressed
    3838             :    as a - b*trunc(a/b), if trunc truncates towards zero.
    3839             :    Some examples:
    3840             :      a           b      a rem b         a mod b
    3841             :      13          10      3               3
    3842             :     -13          10     -3               7
    3843             :      13         -10      3              -7
    3844             :     -13         -10     -3              -3
    3845             :    So, to get from rem to mod, we have to add b if a and b
    3846             :    have different signs.  We then subtract one from the 'div'
    3847             :    part of the outcome to keep the invariant intact. */
    3848             : 
    3849             : /* Compute
    3850             :  *     *pdiv, *pmod = divmod(v, w)
    3851             :  * NULL can be passed for pdiv or pmod, in which case that part of
    3852             :  * the result is simply thrown away.  The caller owns a reference to
    3853             :  * each of these it requests (does not pass NULL for).
    3854             :  */
    3855             : static int
    3856     2746400 : l_divmod(PyLongObject *v, PyLongObject *w,
    3857             :          PyLongObject **pdiv, PyLongObject **pmod)
    3858             : {
    3859             :     PyLongObject *div, *mod;
    3860             : 
    3861     2746400 :     if (Py_ABS(Py_SIZE(v)) == 1 && Py_ABS(Py_SIZE(w)) == 1) {
    3862             :         /* Fast path for single-digit longs */
    3863      594234 :         div = NULL;
    3864      594234 :         if (pdiv != NULL) {
    3865      594234 :             div = (PyLongObject *)fast_floor_div(v, w);
    3866      594234 :             if (div == NULL) {
    3867           0 :                 return -1;
    3868             :             }
    3869             :         }
    3870      594234 :         if (pmod != NULL) {
    3871      594234 :             mod = (PyLongObject *)fast_mod(v, w);
    3872      594234 :             if (mod == NULL) {
    3873           0 :                 Py_XDECREF(div);
    3874           0 :                 return -1;
    3875             :             }
    3876      594234 :             *pmod = mod;
    3877             :         }
    3878      594234 :         if (pdiv != NULL) {
    3879             :             /* We only want to set `*pdiv` when `*pmod` is
    3880             :                set successfully. */
    3881      594234 :             *pdiv = div;
    3882             :         }
    3883      594234 :         return 0;
    3884             :     }
    3885     2152160 :     if (long_divrem(v, w, &div, &mod) < 0)
    3886         277 :         return -1;
    3887     4127400 :     if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
    3888     2411820 :         (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
    3889             :         PyLongObject *temp;
    3890      179485 :         temp = (PyLongObject *) long_add(mod, w);
    3891      179485 :         Py_DECREF(mod);
    3892      179485 :         mod = temp;
    3893      179485 :         if (mod == NULL) {
    3894           0 :             Py_DECREF(div);
    3895           0 :             return -1;
    3896             :         }
    3897      179485 :         temp = (PyLongObject *) long_sub(div, (PyLongObject *)_PyLong_GetOne());
    3898      179485 :         if (temp == NULL) {
    3899           0 :             Py_DECREF(mod);
    3900           0 :             Py_DECREF(div);
    3901           0 :             return -1;
    3902             :         }
    3903      179485 :         Py_DECREF(div);
    3904      179485 :         div = temp;
    3905             :     }
    3906     2151890 :     if (pdiv != NULL)
    3907     2151890 :         *pdiv = div;
    3908             :     else
    3909           0 :         Py_DECREF(div);
    3910             : 
    3911     2151890 :     if (pmod != NULL)
    3912      963308 :         *pmod = mod;
    3913             :     else
    3914     1188580 :         Py_DECREF(mod);
    3915             : 
    3916     2151890 :     return 0;
    3917             : }
    3918             : 
    3919             : /* Compute
    3920             :  *     *pmod = v % w
    3921             :  * pmod cannot be NULL. The caller owns a reference to pmod.
    3922             :  */
    3923             : static int
    3924     4087900 : l_mod(PyLongObject *v, PyLongObject *w, PyLongObject **pmod)
    3925             : {
    3926             :     PyLongObject *mod;
    3927             : 
    3928     4087900 :     assert(pmod);
    3929     4087900 :     if (Py_ABS(Py_SIZE(v)) == 1 && Py_ABS(Py_SIZE(w)) == 1) {
    3930             :         /* Fast path for single-digit longs */
    3931     1276650 :         *pmod = (PyLongObject *)fast_mod(v, w);
    3932     1276650 :         return -(*pmod == NULL);
    3933             :     }
    3934     2811250 :     if (long_rem(v, w, &mod) < 0)
    3935           6 :         return -1;
    3936     5620290 :     if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
    3937     5164300 :         (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
    3938             :         PyLongObject *temp;
    3939        7765 :         temp = (PyLongObject *) long_add(mod, w);
    3940        7765 :         Py_DECREF(mod);
    3941        7765 :         mod = temp;
    3942        7765 :         if (mod == NULL)
    3943           0 :             return -1;
    3944             :     }
    3945     2811240 :     *pmod = mod;
    3946             : 
    3947     2811240 :     return 0;
    3948             : }
    3949             : 
    3950             : static PyObject *
    3951     3600530 : long_div(PyObject *a, PyObject *b)
    3952             : {
    3953             :     PyLongObject *div;
    3954             : 
    3955     3600530 :     CHECK_BINOP(a, b);
    3956             : 
    3957     3600500 :     if (Py_ABS(Py_SIZE(a)) == 1 && Py_ABS(Py_SIZE(b)) == 1) {
    3958     2411660 :         return fast_floor_div((PyLongObject*)a, (PyLongObject*)b);
    3959             :     }
    3960             : 
    3961     1188850 :     if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0)
    3962         267 :         div = NULL;
    3963     1188850 :     return (PyObject *)div;
    3964             : }
    3965             : 
    3966             : /* PyLong/PyLong -> float, with correctly rounded result. */
    3967             : 
    3968             : #define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
    3969             : #define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
    3970             : 
    3971             : static PyObject *
    3972     2253570 : long_true_divide(PyObject *v, PyObject *w)
    3973             : {
    3974             :     PyLongObject *a, *b, *x;
    3975             :     Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
    3976             :     digit mask, low;
    3977             :     int inexact, negate, a_is_small, b_is_small;
    3978             :     double dx, result;
    3979             : 
    3980     2253570 :     CHECK_BINOP(v, w);
    3981     2239620 :     a = (PyLongObject *)v;
    3982     2239620 :     b = (PyLongObject *)w;
    3983             : 
    3984             :     /*
    3985             :        Method in a nutshell:
    3986             : 
    3987             :          0. reduce to case a, b > 0; filter out obvious underflow/overflow
    3988             :          1. choose a suitable integer 'shift'
    3989             :          2. use integer arithmetic to compute x = floor(2**-shift*a/b)
    3990             :          3. adjust x for correct rounding
    3991             :          4. convert x to a double dx with the same value
    3992             :          5. return ldexp(dx, shift).
    3993             : 
    3994             :        In more detail:
    3995             : 
    3996             :        0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
    3997             :        returns either 0.0 or -0.0, depending on the sign of b.  For a and
    3998             :        b both nonzero, ignore signs of a and b, and add the sign back in
    3999             :        at the end.  Now write a_bits and b_bits for the bit lengths of a
    4000             :        and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
    4001             :        for b).  Then
    4002             : 
    4003             :           2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
    4004             : 
    4005             :        So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
    4006             :        so overflows.  Similarly, if a_bits - b_bits < DBL_MIN_EXP -
    4007             :        DBL_MANT_DIG - 1 then a/b underflows to 0.  With these cases out of
    4008             :        the way, we can assume that
    4009             : 
    4010             :           DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
    4011             : 
    4012             :        1. The integer 'shift' is chosen so that x has the right number of
    4013             :        bits for a double, plus two or three extra bits that will be used
    4014             :        in the rounding decisions.  Writing a_bits and b_bits for the
    4015             :        number of significant bits in a and b respectively, a
    4016             :        straightforward formula for shift is:
    4017             : 
    4018             :           shift = a_bits - b_bits - DBL_MANT_DIG - 2
    4019             : 
    4020             :        This is fine in the usual case, but if a/b is smaller than the
    4021             :        smallest normal float then it can lead to double rounding on an
    4022             :        IEEE 754 platform, giving incorrectly rounded results.  So we
    4023             :        adjust the formula slightly.  The actual formula used is:
    4024             : 
    4025             :            shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
    4026             : 
    4027             :        2. The quantity x is computed by first shifting a (left -shift bits
    4028             :        if shift <= 0, right shift bits if shift > 0) and then dividing by
    4029             :        b.  For both the shift and the division, we keep track of whether
    4030             :        the result is inexact, in a flag 'inexact'; this information is
    4031             :        needed at the rounding stage.
    4032             : 
    4033             :        With the choice of shift above, together with our assumption that
    4034             :        a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
    4035             :        that x >= 1.
    4036             : 
    4037             :        3. Now x * 2**shift <= a/b < (x+1) * 2**shift.  We want to replace
    4038             :        this with an exactly representable float of the form
    4039             : 
    4040             :           round(x/2**extra_bits) * 2**(extra_bits+shift).
    4041             : 
    4042             :        For float representability, we need x/2**extra_bits <
    4043             :        2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
    4044             :        DBL_MANT_DIG.  This translates to the condition:
    4045             : 
    4046             :           extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
    4047             : 
    4048             :        To round, we just modify the bottom digit of x in-place; this can
    4049             :        end up giving a digit with value > PyLONG_MASK, but that's not a
    4050             :        problem since digits can hold values up to 2*PyLONG_MASK+1.
    4051             : 
    4052             :        With the original choices for shift above, extra_bits will always
    4053             :        be 2 or 3.  Then rounding under the round-half-to-even rule, we
    4054             :        round up iff the most significant of the extra bits is 1, and
    4055             :        either: (a) the computation of x in step 2 had an inexact result,
    4056             :        or (b) at least one other of the extra bits is 1, or (c) the least
    4057             :        significant bit of x (above those to be rounded) is 1.
    4058             : 
    4059             :        4. Conversion to a double is straightforward; all floating-point
    4060             :        operations involved in the conversion are exact, so there's no
    4061             :        danger of rounding errors.
    4062             : 
    4063             :        5. Use ldexp(x, shift) to compute x*2**shift, the final result.
    4064             :        The result will always be exactly representable as a double, except
    4065             :        in the case that it overflows.  To avoid dependence on the exact
    4066             :        behaviour of ldexp on overflow, we check for overflow before
    4067             :        applying ldexp.  The result of ldexp is adjusted for sign before
    4068             :        returning.
    4069             :     */
    4070             : 
    4071             :     /* Reduce to case where a and b are both positive. */
    4072     2239620 :     a_size = Py_ABS(Py_SIZE(a));
    4073     2239620 :     b_size = Py_ABS(Py_SIZE(b));
    4074     2239620 :     negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0);
    4075     2239620 :     if (b_size == 0) {
    4076        2853 :         PyErr_SetString(PyExc_ZeroDivisionError,
    4077             :                         "division by zero");
    4078        2853 :         goto error;
    4079             :     }
    4080     2236770 :     if (a_size == 0)
    4081        2250 :         goto underflow_or_zero;
    4082             : 
    4083             :     /* Fast path for a and b small (exactly representable in a double).
    4084             :        Relies on floating-point division being correctly rounded; results
    4085             :        may be subject to double rounding on x86 machines that operate with
    4086             :        the x87 FPU set to 64-bit precision. */
    4087     2293140 :     a_is_small = a_size <= MANT_DIG_DIGITS ||
    4088       58629 :         (a_size == MANT_DIG_DIGITS+1 &&
    4089       58629 :          a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
    4090     2254580 :     b_is_small = b_size <= MANT_DIG_DIGITS ||
    4091       20063 :         (b_size == MANT_DIG_DIGITS+1 &&
    4092       20063 :          b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
    4093     2234520 :     if (a_is_small && b_is_small) {
    4094             :         double da, db;
    4095     2124520 :         da = a->ob_digit[--a_size];
    4096     2125090 :         while (a_size > 0)
    4097         572 :             da = da * PyLong_BASE + a->ob_digit[--a_size];
    4098     2124520 :         db = b->ob_digit[--b_size];
    4099     2124660 :         while (b_size > 0)
    4100         142 :             db = db * PyLong_BASE + b->ob_digit[--b_size];
    4101     2124520 :         result = da / db;
    4102     2124520 :         goto success;
    4103             :     }
    4104             : 
    4105             :     /* Catch obvious cases of underflow and overflow */
    4106      109995 :     diff = a_size - b_size;
    4107      109995 :     if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
    4108             :         /* Extreme overflow */
    4109           0 :         goto overflow;
    4110      109995 :     else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
    4111             :         /* Extreme underflow */
    4112           0 :         goto underflow_or_zero;
    4113             :     /* Next line is now safe from overflowing a Py_ssize_t */
    4114      109995 :     diff = diff * PyLong_SHIFT + bit_length_digit(a->ob_digit[a_size - 1]) -
    4115      109995 :         bit_length_digit(b->ob_digit[b_size - 1]);
    4116             :     /* Now diff = a_bits - b_bits. */
    4117      109995 :     if (diff > DBL_MAX_EXP)
    4118          35 :         goto overflow;
    4119      109960 :     else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
    4120          41 :         goto underflow_or_zero;
    4121             : 
    4122             :     /* Choose value for shift; see comments for step 1 above. */
    4123      109919 :     shift = Py_MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
    4124             : 
    4125      109919 :     inexact = 0;
    4126             : 
    4127             :     /* x = abs(a * 2**-shift) */
    4128      109919 :     if (shift <= 0) {
    4129       88299 :         Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
    4130             :         digit rem;
    4131             :         /* x = a << -shift */
    4132       88299 :         if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
    4133             :             /* In practice, it's probably impossible to end up
    4134             :                here.  Both a and b would have to be enormous,
    4135             :                using close to SIZE_T_MAX bytes of memory each. */
    4136           0 :             PyErr_SetString(PyExc_OverflowError,
    4137             :                             "intermediate overflow during division");
    4138           0 :             goto error;
    4139             :         }
    4140       88299 :         x = _PyLong_New(a_size + shift_digits + 1);
    4141       88299 :         if (x == NULL)
    4142           0 :             goto error;
    4143      437366 :         for (i = 0; i < shift_digits; i++)
    4144      349067 :             x->ob_digit[i] = 0;
    4145       88299 :         rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit,
    4146       88299 :                        a_size, -shift % PyLong_SHIFT);
    4147       88299 :         x->ob_digit[a_size + shift_digits] = rem;
    4148             :     }
    4149             :     else {
    4150       21620 :         Py_ssize_t shift_digits = shift / PyLong_SHIFT;
    4151             :         digit rem;
    4152             :         /* x = a >> shift */
    4153       21620 :         assert(a_size >= shift_digits);
    4154       21620 :         x = _PyLong_New(a_size - shift_digits);
    4155       21620 :         if (x == NULL)
    4156           0 :             goto error;
    4157       21620 :         rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits,
    4158       21620 :                        a_size - shift_digits, shift % PyLong_SHIFT);
    4159             :         /* set inexact if any of the bits shifted out is nonzero */
    4160       21620 :         if (rem)
    4161       16590 :             inexact = 1;
    4162       32817 :         while (!inexact && shift_digits > 0)
    4163       11197 :             if (a->ob_digit[--shift_digits])
    4164        1588 :                 inexact = 1;
    4165             :     }
    4166      109919 :     long_normalize(x);
    4167      109919 :     x_size = Py_SIZE(x);
    4168             : 
    4169             :     /* x //= b. If the remainder is nonzero, set inexact.  We own the only
    4170             :        reference to x, so it's safe to modify it in-place. */
    4171      109919 :     if (b_size == 1) {
    4172       16437 :         digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size,
    4173             :                               b->ob_digit[0]);
    4174       16437 :         long_normalize(x);
    4175       16437 :         if (rem)
    4176        1448 :             inexact = 1;
    4177             :     }
    4178             :     else {
    4179             :         PyLongObject *div, *rem;
    4180       93482 :         div = x_divrem(x, b, &rem);
    4181       93482 :         Py_DECREF(x);
    4182       93482 :         x = div;
    4183       93482 :         if (x == NULL)
    4184           0 :             goto error;
    4185       93482 :         if (Py_SIZE(rem))
    4186       48012 :             inexact = 1;
    4187       93482 :         Py_DECREF(rem);
    4188             :     }
    4189      109919 :     x_size = Py_ABS(Py_SIZE(x));
    4190      109919 :     assert(x_size > 0); /* result of division is never zero */
    4191      109919 :     x_bits = (x_size-1)*PyLong_SHIFT+bit_length_digit(x->ob_digit[x_size-1]);
    4192             : 
    4193             :     /* The number of extra bits that have to be rounded away. */
    4194      109919 :     extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
    4195      109919 :     assert(extra_bits == 2 || extra_bits == 3);
    4196             : 
    4197             :     /* Round by directly modifying the low digit of x. */
    4198      109919 :     mask = (digit)1 << (extra_bits - 1);
    4199      109919 :     low = x->ob_digit[0] | inexact;
    4200      109919 :     if ((low & mask) && (low & (3U*mask-1U)))
    4201       55051 :         low += mask;
    4202      109919 :     x->ob_digit[0] = low & ~(2U*mask-1U);
    4203             : 
    4204             :     /* Convert x to a double dx; the conversion is exact. */
    4205      109919 :     dx = x->ob_digit[--x_size];
    4206      219765 :     while (x_size > 0)
    4207      109846 :         dx = dx * PyLong_BASE + x->ob_digit[--x_size];
    4208      109919 :     Py_DECREF(x);
    4209             : 
    4210             :     /* Check whether ldexp result will overflow a double. */
    4211      109919 :     if (shift + x_bits >= DBL_MAX_EXP &&
    4212         487 :         (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
    4213         253 :         goto overflow;
    4214      109666 :     result = ldexp(dx, (int)shift);
    4215             : 
    4216     2234190 :   success:
    4217     2234190 :     return PyFloat_FromDouble(negate ? -result : result);
    4218             : 
    4219        2291 :   underflow_or_zero:
    4220        2291 :     return PyFloat_FromDouble(negate ? -0.0 : 0.0);
    4221             : 
    4222         288 :   overflow:
    4223         288 :     PyErr_SetString(PyExc_OverflowError,
    4224             :                     "integer division result too large for a float");
    4225        3141 :   error:
    4226        3141 :     return NULL;
    4227             : }
    4228             : 
    4229             : static PyObject *
    4230     1612660 : long_mod(PyObject *a, PyObject *b)
    4231             : {
    4232             :     PyLongObject *mod;
    4233             : 
    4234     1612660 :     CHECK_BINOP(a, b);
    4235             : 
    4236     1612640 :     if (l_mod((PyLongObject*)a, (PyLongObject*)b, &mod) < 0)
    4237           6 :         mod = NULL;
    4238     1612640 :     return (PyObject *)mod;
    4239             : }
    4240             : 
    4241             : static PyObject *
    4242     1421190 : long_divmod(PyObject *a, PyObject *b)
    4243             : {
    4244             :     PyLongObject *div, *mod;
    4245             :     PyObject *z;
    4246             : 
    4247     1421190 :     CHECK_BINOP(a, b);
    4248             : 
    4249     1421160 :     if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) {
    4250          10 :         return NULL;
    4251             :     }
    4252     1421160 :     z = PyTuple_New(2);
    4253     1421160 :     if (z != NULL) {
    4254     1421160 :         PyTuple_SET_ITEM(z, 0, (PyObject *) div);
    4255     1421160 :         PyTuple_SET_ITEM(z, 1, (PyObject *) mod);
    4256             :     }
    4257             :     else {
    4258           0 :         Py_DECREF(div);
    4259           0 :         Py_DECREF(mod);
    4260             :     }
    4261     1421160 :     return z;
    4262             : }
    4263             : 
    4264             : 
    4265             : /* Compute an inverse to a modulo n, or raise ValueError if a is not
    4266             :    invertible modulo n. Assumes n is positive. The inverse returned
    4267             :    is whatever falls out of the extended Euclidean algorithm: it may
    4268             :    be either positive or negative, but will be smaller than n in
    4269             :    absolute value.
    4270             : 
    4271             :    Pure Python equivalent for long_invmod:
    4272             : 
    4273             :         def invmod(a, n):
    4274             :             b, c = 1, 0
    4275             :             while n:
    4276             :                 q, r = divmod(a, n)
    4277             :                 a, b, c, n = n, c, b - q*c, r
    4278             : 
    4279             :             # at this point a is the gcd of the original inputs
    4280             :             if a == 1:
    4281             :                 return b
    4282             :             raise ValueError("Not invertible")
    4283             : */
    4284             : 
    4285             : static PyLongObject *
    4286       39482 : long_invmod(PyLongObject *a, PyLongObject *n)
    4287             : {
    4288             :     PyLongObject *b, *c;
    4289             : 
    4290             :     /* Should only ever be called for positive n */
    4291       39482 :     assert(Py_SIZE(n) > 0);
    4292             : 
    4293       39482 :     b = (PyLongObject *)PyLong_FromLong(1L);
    4294       39482 :     if (b == NULL) {
    4295           0 :         return NULL;
    4296             :     }
    4297       39482 :     c = (PyLongObject *)PyLong_FromLong(0L);
    4298       39482 :     if (c == NULL) {
    4299           0 :         Py_DECREF(b);
    4300           0 :         return NULL;
    4301             :     }
    4302       39482 :     Py_INCREF(a);
    4303       39482 :     Py_INCREF(n);
    4304             : 
    4305             :     /* references now owned: a, b, c, n */
    4306      175869 :     while (Py_SIZE(n) != 0) {
    4307             :         PyLongObject *q, *r, *s, *t;
    4308             : 
    4309      136387 :         if (l_divmod(a, n, &q, &r) == -1) {
    4310           0 :             goto Error;
    4311             :         }
    4312      136387 :         Py_DECREF(a);
    4313      136387 :         a = n;
    4314      136387 :         n = r;
    4315      136387 :         t = (PyLongObject *)long_mul(q, c);
    4316      136387 :         Py_DECREF(q);
    4317      136387 :         if (t == NULL) {
    4318           0 :             goto Error;
    4319             :         }
    4320      136387 :         s = (PyLongObject *)long_sub(b, t);
    4321      136387 :         Py_DECREF(t);
    4322      136387 :         if (s == NULL) {
    4323           0 :             goto Error;
    4324             :         }
    4325      136387 :         Py_DECREF(b);
    4326      136387 :         b = c;
    4327      136387 :         c = s;
    4328             :     }
    4329             :     /* references now owned: a, b, c, n */
    4330             : 
    4331       39482 :     Py_DECREF(c);
    4332       39482 :     Py_DECREF(n);
    4333       39482 :     if (long_compare(a, (PyLongObject *)_PyLong_GetOne())) {
    4334             :         /* a != 1; we don't have an inverse. */
    4335       11373 :         Py_DECREF(a);
    4336       11373 :         Py_DECREF(b);
    4337       11373 :         PyErr_SetString(PyExc_ValueError,
    4338             :                         "base is not invertible for the given modulus");
    4339       11373 :         return NULL;
    4340             :     }
    4341             :     else {
    4342             :         /* a == 1; b gives an inverse modulo n */
    4343       28109 :         Py_DECREF(a);
    4344       28109 :         return b;
    4345             :     }
    4346             : 
    4347           0 :   Error:
    4348           0 :     Py_DECREF(a);
    4349           0 :     Py_DECREF(b);
    4350           0 :     Py_DECREF(c);
    4351           0 :     Py_DECREF(n);
    4352           0 :     return NULL;
    4353             : }
    4354             : 
    4355             : 
    4356             : /* pow(v, w, x) */
    4357             : static PyObject *
    4358     1458370 : long_pow(PyObject *v, PyObject *w, PyObject *x)
    4359             : {
    4360             :     PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
    4361     1458370 :     int negativeOutput = 0;  /* if x<0 return negative output */
    4362             : 
    4363     1458370 :     PyLongObject *z = NULL;  /* accumulated result */
    4364             :     Py_ssize_t i, j;             /* counters */
    4365     1458370 :     PyLongObject *temp = NULL;
    4366     1458370 :     PyLongObject *a2 = NULL; /* may temporarily hold a**2 % c */
    4367             : 
    4368             :     /* k-ary values.  If the exponent is large enough, table is
    4369             :      * precomputed so that table[i] == a**(2*i+1) % c for i in
    4370             :      * range(EXP_TABLE_LEN).
    4371             :      * Note: this is uninitialzed stack trash: don't pay to set it to known
    4372             :      * values unless it's needed. Instead ensure that num_table_entries is
    4373             :      * set to the number of entries actually filled whenever a branch to the
    4374             :      * Error or Done labels is possible.
    4375             :      */
    4376             :     PyLongObject *table[EXP_TABLE_LEN];
    4377     1458370 :     Py_ssize_t num_table_entries = 0;
    4378             : 
    4379             :     /* a, b, c = v, w, x */
    4380     1458370 :     CHECK_BINOP(v, w);
    4381     1458240 :     a = (PyLongObject*)v; Py_INCREF(a);
    4382     1458240 :     b = (PyLongObject*)w; Py_INCREF(b);
    4383     1458240 :     if (PyLong_Check(x)) {
    4384       92962 :         c = (PyLongObject *)x;
    4385       92962 :         Py_INCREF(x);
    4386             :     }
    4387     1365270 :     else if (x == Py_None)
    4388     1365270 :         c = NULL;
    4389             :     else {
    4390           1 :         Py_DECREF(a);
    4391           1 :         Py_DECREF(b);
    4392           1 :         Py_RETURN_NOTIMPLEMENTED;
    4393             :     }
    4394             : 
    4395     1458230 :     if (Py_SIZE(b) < 0 && c == NULL) {
    4396             :         /* if exponent is negative and there's no modulus:
    4397             :                return a float.  This works because we know
    4398             :                that this calls float_pow() which converts its
    4399             :                arguments to double. */
    4400        9233 :         Py_DECREF(a);
    4401        9233 :         Py_DECREF(b);
    4402        9233 :         return PyFloat_Type.tp_as_number->nb_power(v, w, x);
    4403             :     }
    4404             : 
    4405     1449000 :     if (c) {
    4406             :         /* if modulus == 0:
    4407             :                raise ValueError() */
    4408       92962 :         if (Py_SIZE(c) == 0) {
    4409         301 :             PyErr_SetString(PyExc_ValueError,
    4410             :                             "pow() 3rd argument cannot be 0");
    4411         301 :             goto Error;
    4412             :         }
    4413             : 
    4414             :         /* if modulus < 0:
    4415             :                negativeOutput = True
    4416             :                modulus = -modulus */
    4417       92661 :         if (Py_SIZE(c) < 0) {
    4418       31532 :             negativeOutput = 1;
    4419       31532 :             temp = (PyLongObject *)_PyLong_Copy(c);
    4420       31532 :             if (temp == NULL)
    4421           0 :                 goto Error;
    4422       31532 :             Py_DECREF(c);
    4423       31532 :             c = temp;
    4424       31532 :             temp = NULL;
    4425       31532 :             _PyLong_Negate(&c);
    4426       31532 :             if (c == NULL)
    4427           0 :                 goto Error;
    4428             :         }
    4429             : 
    4430             :         /* if modulus == 1:
    4431             :                return 0 */
    4432       92661 :         if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) {
    4433        2550 :             z = (PyLongObject *)PyLong_FromLong(0L);
    4434        2550 :             goto Done;
    4435             :         }
    4436             : 
    4437             :         /* if exponent is negative, negate the exponent and
    4438             :            replace the base with a modular inverse */
    4439       90111 :         if (Py_SIZE(b) < 0) {
    4440       39482 :             temp = (PyLongObject *)_PyLong_Copy(b);
    4441       39482 :             if (temp == NULL)
    4442           0 :                 goto Error;
    4443       39482 :             Py_DECREF(b);
    4444       39482 :             b = temp;
    4445       39482 :             temp = NULL;
    4446       39482 :             _PyLong_Negate(&b);
    4447       39482 :             if (b == NULL)
    4448           0 :                 goto Error;
    4449             : 
    4450       39482 :             temp = long_invmod(a, c);
    4451       39482 :             if (temp == NULL)
    4452       11373 :                 goto Error;
    4453       28109 :             Py_DECREF(a);
    4454       28109 :             a = temp;
    4455       28109 :             temp = NULL;
    4456             :         }
    4457             : 
    4458             :         /* Reduce base by modulus in some cases:
    4459             :            1. If base < 0.  Forcing the base non-negative makes things easier.
    4460             :            2. If base is obviously larger than the modulus.  The "small
    4461             :               exponent" case later can multiply directly by base repeatedly,
    4462             :               while the "large exponent" case multiplies directly by base 31
    4463             :               times.  It can be unboundedly faster to multiply by
    4464             :               base % modulus instead.
    4465             :            We could _always_ do this reduction, but l_mod() isn't cheap,
    4466             :            so we only do it when it buys something. */
    4467       78738 :         if (Py_SIZE(a) < 0 || Py_SIZE(a) > Py_SIZE(c)) {
    4468       24527 :             if (l_mod(a, c, &temp) < 0)
    4469           0 :                 goto Error;
    4470       24527 :             Py_DECREF(a);
    4471       24527 :             a = temp;
    4472       24527 :             temp = NULL;
    4473             :         }
    4474             :     }
    4475             : 
    4476             :     /* At this point a, b, and c are guaranteed non-negative UNLESS
    4477             :        c is NULL, in which case a may be negative. */
    4478             : 
    4479     1434780 :     z = (PyLongObject *)PyLong_FromLong(1L);
    4480     1434780 :     if (z == NULL)
    4481           0 :         goto Error;
    4482             : 
    4483             :     /* Perform a modular reduction, X = X % c, but leave X alone if c
    4484             :      * is NULL.
    4485             :      */
    4486             : #define REDUCE(X)                                       \
    4487             :     do {                                                \
    4488             :         if (c != NULL) {                                \
    4489             :             if (l_mod(X, c, &temp) < 0)                 \
    4490             :                 goto Error;                             \
    4491             :             Py_XDECREF(X);                              \
    4492             :             X = temp;                                   \
    4493             :             temp = NULL;                                \
    4494             :         }                                               \
    4495             :     } while(0)
    4496             : 
    4497             :     /* Multiply two values, then reduce the result:
    4498             :        result = X*Y % c.  If c is NULL, skip the mod. */
    4499             : #define MULT(X, Y, result)                      \
    4500             :     do {                                        \
    4501             :         temp = (PyLongObject *)long_mul(X, Y);  \
    4502             :         if (temp == NULL)                       \
    4503             :             goto Error;                         \
    4504             :         Py_XDECREF(result);                     \
    4505             :         result = temp;                          \
    4506             :         temp = NULL;                            \
    4507             :         REDUCE(result);                         \
    4508             :     } while(0)
    4509             : 
    4510     1434780 :     i = Py_SIZE(b);
    4511     1434780 :     digit bi = i ? b->ob_digit[i-1] : 0;
    4512             :     digit bit;
    4513     1434780 :     if (i <= 1 && bi <= 3) {
    4514             :         /* aim for minimal overhead */
    4515      713573 :         if (bi >= 2) {
    4516      566270 :             MULT(a, a, z);
    4517      566270 :             if (bi == 3) {
    4518       96322 :                 MULT(z, a, z);
    4519             :             }
    4520             :         }
    4521      147303 :         else if (bi == 1) {
    4522             :             /* Multiplying by 1 serves two purposes: if `a` is of an int
    4523             :              * subclass, makes the result an int (e.g., pow(False, 1) returns
    4524             :              * 0 instead of False), and potentially reduces `a` by the modulus.
    4525             :              */
    4526       57433 :             MULT(a, z, z);
    4527             :         }
    4528             :         /* else bi is 0, and z==1 is correct */
    4529             :     }
    4530      721204 :     else if (i <= HUGE_EXP_CUTOFF / PyLong_SHIFT ) {
    4531             :         /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
    4532             :         /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf    */
    4533             : 
    4534             :         /* Find the first significant exponent bit. Search right to left
    4535             :          * because we're primarily trying to cut overhead for small powers.
    4536             :          */
    4537      721041 :         assert(bi);  /* else there is no significant bit */
    4538      721041 :         Py_INCREF(a);
    4539      721041 :         Py_DECREF(z);
    4540      721041 :         z = a;
    4541     3953280 :         for (bit = 2; ; bit <<= 1) {
    4542     3953280 :             if (bit > bi) { /* found the first bit */
    4543      721041 :                 assert((bi & bit) == 0);
    4544      721041 :                 bit >>= 1;
    4545      721041 :                 assert(bi & bit);
    4546      721041 :                 break;
    4547             :             }
    4548             :         }
    4549      721041 :         for (--i, bit >>= 1;;) {
    4550     3954140 :             for (; bit != 0; bit >>= 1) {
    4551     3233080 :                 MULT(z, z, z);
    4552     3233080 :                 if (bi & bit) {
    4553     1629220 :                     MULT(z, a, z);
    4554             :                 }
    4555             :             }
    4556      721069 :             if (--i < 0) {
    4557      721041 :                 break;
    4558             :             }
    4559          28 :             bi = b->ob_digit[i];
    4560          28 :             bit = (digit)1 << (PyLong_SHIFT-1);
    4561             :         }
    4562             :     }
    4563             :     else {
    4564             :         /* Left-to-right k-ary sliding window exponentiation
    4565             :          * (Handbook of Applied Cryptography (HAC) Algorithm 14.85)
    4566             :          */
    4567         163 :         Py_INCREF(a);
    4568         163 :         table[0] = a;
    4569         163 :         num_table_entries = 1;
    4570         163 :         MULT(a, a, a2);
    4571             :         /* table[i] == a**(2*i + 1) % c */
    4572        2608 :         for (i = 1; i < EXP_TABLE_LEN; ++i) {
    4573        2445 :             table[i] = NULL; /* must set to known value for MULT */
    4574        2445 :             MULT(table[i-1], a2, table[i]);
    4575        2445 :             ++num_table_entries; /* incremented iff MULT succeeded */
    4576             :         }
    4577         163 :         Py_CLEAR(a2);
    4578             : 
    4579             :         /* Repeatedly extract the next (no more than) EXP_WINDOW_SIZE bits
    4580             :          * into `pending`, starting with the next 1 bit.  The current bit
    4581             :          * length of `pending` is `blen`.
    4582             :          */
    4583         163 :         int pending = 0, blen = 0;
    4584             : #define ABSORB_PENDING  do { \
    4585             :             int ntz = 0; /* number of trailing zeroes in `pending` */ \
    4586             :             assert(pending && blen); \
    4587             :             assert(pending >> (blen - 1)); \
    4588             :             assert(pending >> blen == 0); \
    4589             :             while ((pending & 1) == 0) { \
    4590             :                 ++ntz; \
    4591             :                 pending >>= 1; \
    4592             :             } \
    4593             :             assert(ntz < blen); \
    4594             :             blen -= ntz; \
    4595             :             do { \
    4596             :                 MULT(z, z, z); \
    4597             :             } while (--blen); \
    4598             :             MULT(z, table[pending >> 1], z); \
    4599             :             while (ntz-- > 0) \
    4600             :                 MULT(z, z, z); \
    4601             :             assert(blen == 0); \
    4602             :             pending = 0; \
    4603             :         } while(0)
    4604             : 
    4605       52218 :         for (i = Py_SIZE(b) - 1; i >= 0; --i) {
    4606       52055 :             const digit bi = b->ob_digit[i];
    4607     1613700 :             for (j = PyLong_SHIFT - 1; j >= 0; --j) {
    4608     1561650 :                 const int bit = (bi >> j) & 1;
    4609     1561650 :                 pending = (pending << 1) | bit;
    4610     1561650 :                 if (pending) {
    4611     1297950 :                     ++blen;
    4612     1297950 :                     if (blen == EXP_WINDOW_SIZE)
    4613     1540580 :                         ABSORB_PENDING;
    4614             :                 }
    4615             :                 else /* absorb strings of 0 bits */
    4616      263702 :                     MULT(z, z, z);
    4617             :             }
    4618             :         }
    4619         163 :         if (pending)
    4620         118 :             ABSORB_PENDING;
    4621             :     }
    4622             : 
    4623     1434780 :     if (negativeOutput && (Py_SIZE(z) != 0)) {
    4624       23640 :         temp = (PyLongObject *)long_sub(z, c);
    4625       23640 :         if (temp == NULL)
    4626           0 :             goto Error;
    4627       23640 :         Py_DECREF(z);
    4628       23640 :         z = temp;
    4629       23640 :         temp = NULL;
    4630             :     }
    4631     1434780 :     goto Done;
    4632             : 
    4633       11674 :   Error:
    4634       11674 :     Py_CLEAR(z);
    4635             :     /* fall through */
    4636       11674 :   Done:
    4637     1451610 :     for (i = 0; i < num_table_entries; ++i)
    4638        2608 :         Py_DECREF(table[i]);
    4639     1449000 :     Py_DECREF(a);
    4640     1449000 :     Py_DECREF(b);
    4641     1449000 :     Py_XDECREF(c);
    4642     1449000 :     Py_XDECREF(a2);
    4643     1449000 :     Py_XDECREF(temp);
    4644     1449000 :     return (PyObject *)z;
    4645             : }
    4646             : 
    4647             : static PyObject *
    4648      824584 : long_invert(PyLongObject *v)
    4649             : {
    4650             :     /* Implement ~x as -(x+1) */
    4651             :     PyLongObject *x;
    4652      824584 :     if (IS_MEDIUM_VALUE(v))
    4653      813104 :         return _PyLong_FromSTwoDigits(~medium_value(v));
    4654       11480 :     x = (PyLongObject *) long_add(v, (PyLongObject *)_PyLong_GetOne());
    4655       11480 :     if (x == NULL)
    4656           0 :         return NULL;
    4657       11480 :     _PyLong_Negate(&x);
    4658             :     /* No need for maybe_small_long here, since any small
    4659             :        longs will have been caught in the Py_SIZE <= 1 fast path. */
    4660       11480 :     return (PyObject *)x;
    4661             : }
    4662             : 
    4663             : static PyObject *
    4664     1508120 : long_neg(PyLongObject *v)
    4665             : {
    4666             :     PyLongObject *z;
    4667     1508120 :     if (IS_MEDIUM_VALUE(v))
    4668     1132780 :         return _PyLong_FromSTwoDigits(-medium_value(v));
    4669      375344 :     z = (PyLongObject *)_PyLong_Copy(v);
    4670      375344 :     if (z != NULL)
    4671      375344 :         Py_SET_SIZE(z, -(Py_SIZE(v)));
    4672      375344 :     return (PyObject *)z;
    4673             : }
    4674             : 
    4675             : static PyObject *
    4676     1389170 : long_abs(PyLongObject *v)
    4677             : {
    4678     1389170 :     if (Py_SIZE(v) < 0)
    4679      311112 :         return long_neg(v);
    4680             :     else
    4681     1078060 :         return long_long((PyObject *)v);
    4682             : }
    4683             : 
    4684             : static int
    4685    18521900 : long_bool(PyLongObject *v)
    4686             : {
    4687    18521900 :     return Py_SIZE(v) != 0;
    4688             : }
    4689             : 
    4690             : /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
    4691             : static int
    4692     3152880 : divmod_shift(PyObject *shiftby, Py_ssize_t *wordshift, digit *remshift)
    4693             : {
    4694     3152880 :     assert(PyLong_Check(shiftby));
    4695     3152880 :     assert(Py_SIZE(shiftby) >= 0);
    4696     3152880 :     Py_ssize_t lshiftby = PyLong_AsSsize_t((PyObject *)shiftby);
    4697     3152880 :     if (lshiftby >= 0) {
    4698     3152870 :         *wordshift = lshiftby / PyLong_SHIFT;
    4699     3152870 :         *remshift = lshiftby % PyLong_SHIFT;
    4700     3152870 :         return 0;
    4701             :     }
    4702             :     /* PyLong_Check(shiftby) is true and Py_SIZE(shiftby) >= 0, so it must
    4703             :        be that PyLong_AsSsize_t raised an OverflowError. */
    4704           6 :     assert(PyErr_ExceptionMatches(PyExc_OverflowError));
    4705           6 :     PyErr_Clear();
    4706           6 :     PyLongObject *wordshift_obj = divrem1((PyLongObject *)shiftby, PyLong_SHIFT, remshift);
    4707           6 :     if (wordshift_obj == NULL) {
    4708           0 :         return -1;
    4709             :     }
    4710           6 :     *wordshift = PyLong_AsSsize_t((PyObject *)wordshift_obj);
    4711           6 :     Py_DECREF(wordshift_obj);
    4712           6 :     if (*wordshift >= 0 && *wordshift < PY_SSIZE_T_MAX / (Py_ssize_t)sizeof(digit)) {
    4713           0 :         return 0;
    4714             :     }
    4715           6 :     PyErr_Clear();
    4716             :     /* Clip the value.  With such large wordshift the right shift
    4717             :        returns 0 and the left shift raises an error in _PyLong_New(). */
    4718           6 :     *wordshift = PY_SSIZE_T_MAX / sizeof(digit);
    4719           6 :     *remshift = 0;
    4720           6 :     return 0;
    4721             : }
    4722             : 
    4723             : /* Inner function for both long_rshift and _PyLong_Rshift, shifting an
    4724             :    integer right by PyLong_SHIFT*wordshift + remshift bits.
    4725             :    wordshift should be nonnegative. */
    4726             : 
    4727             : static PyObject *
    4728     1574410 : long_rshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
    4729             : {
    4730     1574410 :     PyLongObject *z = NULL;
    4731             :     Py_ssize_t newsize, hishift, size_a;
    4732             :     twodigits accum;
    4733             :     int a_negative;
    4734             : 
    4735             :     /* Total number of bits shifted must be nonnegative. */
    4736     1574410 :     assert(wordshift >= 0);
    4737     1574410 :     assert(remshift < PyLong_SHIFT);
    4738             : 
    4739             :     /* Fast path for small a. */
    4740     1574410 :     if (IS_MEDIUM_VALUE(a)) {
    4741             :         stwodigits m, x;
    4742             :         digit shift;
    4743     1070000 :         m = medium_value(a);
    4744     1070000 :         shift = wordshift == 0 ? remshift : PyLong_SHIFT;
    4745     1070000 :         x = m < 0 ? ~(~m >> shift) : m >> shift;
    4746     1070000 :         return _PyLong_FromSTwoDigits(x);
    4747             :     }
    4748             : 
    4749      504404 :     a_negative = Py_SIZE(a) < 0;
    4750      504404 :     size_a = Py_ABS(Py_SIZE(a));
    4751             : 
    4752      504404 :     if (a_negative) {
    4753             :         /* For negative 'a', adjust so that 0 < remshift <= PyLong_SHIFT,
    4754             :            while keeping PyLong_SHIFT*wordshift + remshift the same. This
    4755             :            ensures that 'newsize' is computed correctly below. */
    4756       25226 :         if (remshift == 0) {
    4757        1102 :             if (wordshift == 0) {
    4758             :                 /* Can only happen if the original shift was 0. */
    4759         807 :                 return long_long((PyObject *)a);
    4760             :             }
    4761         295 :             remshift = PyLong_SHIFT;
    4762         295 :             --wordshift;
    4763             :         }
    4764             :     }
    4765             : 
    4766      503597 :     assert(wordshift >= 0);
    4767      503597 :     newsize = size_a - wordshift;
    4768      503597 :     if (newsize <= 0) {
    4769             :         /* Shifting all the bits of 'a' out gives either -1 or 0. */
    4770           2 :         return PyLong_FromLong(-a_negative);
    4771             :     }
    4772      503595 :     z = _PyLong_New(newsize);
    4773      503595 :     if (z == NULL) {
    4774           0 :         return NULL;
    4775             :     }
    4776      503595 :     hishift = PyLong_SHIFT - remshift;
    4777             : 
    4778      503595 :     accum = a->ob_digit[wordshift];
    4779      503595 :     if (a_negative) {
    4780             :         /*
    4781             :             For a positive integer a and nonnegative shift, we have:
    4782             : 
    4783             :                 (-a) >> shift == -((a + 2**shift - 1) >> shift).
    4784             : 
    4785             :             In the addition `a + (2**shift - 1)`, the low `wordshift` digits of
    4786             :             `2**shift - 1` all have value `PyLong_MASK`, so we get a carry out
    4787             :             from the bottom `wordshift` digits when at least one of the least
    4788             :             significant `wordshift` digits of `a` is nonzero. Digit `wordshift`
    4789             :             of `2**shift - 1` has value `PyLong_MASK >> hishift`.
    4790             :         */
    4791       24418 :         Py_SET_SIZE(z, -newsize);
    4792             : 
    4793       24418 :         digit sticky = 0;
    4794       32887 :         for (Py_ssize_t j = 0; j < wordshift; j++) {
    4795        8469 :             sticky |= a->ob_digit[j];
    4796             :         }
    4797       24418 :         accum += (PyLong_MASK >> hishift) + (digit)(sticky != 0);
    4798             :     }
    4799             : 
    4800      503595 :     accum >>= remshift;
    4801     1532520 :     for (Py_ssize_t i = 0, j = wordshift + 1; j < size_a; i++, j++) {
    4802     1028930 :         accum += (twodigits)a->ob_digit[j] << hishift;
    4803     1028930 :         z->ob_digit[i] = (digit)(accum & PyLong_MASK);
    4804     1028930 :         accum >>= PyLong_SHIFT;
    4805             :     }
    4806      503595 :     assert(accum <= PyLong_MASK);
    4807      503595 :     z->ob_digit[newsize - 1] = (digit)accum;
    4808             : 
    4809      503595 :     z = maybe_small_long(long_normalize(z));
    4810      503595 :     return (PyObject *)z;
    4811             : }
    4812             : 
    4813             : static PyObject *
    4814     1464550 : long_rshift(PyObject *a, PyObject *b)
    4815             : {
    4816             :     Py_ssize_t wordshift;
    4817             :     digit remshift;
    4818             : 
    4819     1464550 :     CHECK_BINOP(a, b);
    4820             : 
    4821     1464520 :     if (Py_SIZE(b) < 0) {
    4822           7 :         PyErr_SetString(PyExc_ValueError, "negative shift count");
    4823           7 :         return NULL;
    4824             :     }
    4825     1464520 :     if (Py_SIZE(a) == 0) {
    4826       35042 :         return PyLong_FromLong(0);
    4827             :     }
    4828     1429470 :     if (divmod_shift(b, &wordshift, &remshift) < 0)
    4829           0 :         return NULL;
    4830     1429470 :     return long_rshift1((PyLongObject *)a, wordshift, remshift);
    4831             : }
    4832             : 
    4833             : /* Return a >> shiftby. */
    4834             : PyObject *
    4835      144933 : _PyLong_Rshift(PyObject *a, size_t shiftby)
    4836             : {
    4837             :     Py_ssize_t wordshift;
    4838             :     digit remshift;
    4839             : 
    4840      144933 :     assert(PyLong_Check(a));
    4841      144933 :     if (Py_SIZE(a) == 0) {
    4842           0 :         return PyLong_FromLong(0);
    4843             :     }
    4844      144933 :     wordshift = shiftby / PyLong_SHIFT;
    4845      144933 :     remshift = shiftby % PyLong_SHIFT;
    4846      144933 :     return long_rshift1((PyLongObject *)a, wordshift, remshift);
    4847             : }
    4848             : 
    4849             : static PyObject *
    4850     1845120 : long_lshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
    4851             : {
    4852     1845120 :     PyLongObject *z = NULL;
    4853             :     Py_ssize_t oldsize, newsize, i, j;
    4854             :     twodigits accum;
    4855             : 
    4856     1845120 :     if (wordshift == 0 && IS_MEDIUM_VALUE(a)) {
    4857      451339 :         stwodigits m = medium_value(a);
    4858             :         // bypass undefined shift operator behavior
    4859      451339 :         stwodigits x = m < 0 ? -(-m << remshift) : m << remshift;
    4860      451339 :         return _PyLong_FromSTwoDigits(x);
    4861             :     }
    4862             : 
    4863     1393780 :     oldsize = Py_ABS(Py_SIZE(a));
    4864     1393780 :     newsize = oldsize + wordshift;
    4865     1393780 :     if (remshift)
    4866     1231350 :         ++newsize;
    4867     1393780 :     z = _PyLong_New(newsize);
    4868     1393780 :     if (z == NULL)
    4869           0 :         return NULL;
    4870     1393780 :     if (Py_SIZE(a) < 0) {
    4871      319158 :         assert(Py_REFCNT(z) == 1);
    4872      319158 :         Py_SET_SIZE(z, -Py_SIZE(z));
    4873             :     }
    4874     6726840 :     for (i = 0; i < wordshift; i++)
    4875     5333060 :         z->ob_digit[i] = 0;
    4876     1393780 :     accum = 0;
    4877    12427900 :     for (j = 0; j < oldsize; i++, j++) {
    4878    11034100 :         accum |= (twodigits)a->ob_digit[j] << remshift;
    4879    11034100 :         z->ob_digit[i] = (digit)(accum & PyLong_MASK);
    4880    11034100 :         accum >>= PyLong_SHIFT;
    4881             :     }
    4882     1393780 :     if (remshift)
    4883     1231350 :         z->ob_digit[newsize-1] = (digit)accum;
    4884             :     else
    4885      162426 :         assert(!accum);
    4886     1393780 :     z = long_normalize(z);
    4887     1393780 :     return (PyObject *) maybe_small_long(z);
    4888             : }
    4889             : 
    4890             : static PyObject *
    4891     1807620 : long_lshift(PyObject *a, PyObject *b)
    4892             : {
    4893             :     Py_ssize_t wordshift;
    4894             :     digit remshift;
    4895             : 
    4896     1807620 :     CHECK_BINOP(a, b);
    4897             : 
    4898     1807610 :     if (Py_SIZE(b) < 0) {
    4899           8 :         PyErr_SetString(PyExc_ValueError, "negative shift count");
    4900           8 :         return NULL;
    4901             :     }
    4902     1807600 :     if (Py_SIZE(a) == 0) {
    4903       84196 :         return PyLong_FromLong(0);
    4904             :     }
    4905     1723410 :     if (divmod_shift(b, &wordshift, &remshift) < 0)
    4906           0 :         return NULL;
    4907     1723410 :     return long_lshift1((PyLongObject *)a, wordshift, remshift);
    4908             : }
    4909             : 
    4910             : /* Return a << shiftby. */
    4911             : PyObject *
    4912      121709 : _PyLong_Lshift(PyObject *a, size_t shiftby)
    4913             : {
    4914             :     Py_ssize_t wordshift;
    4915             :     digit remshift;
    4916             : 
    4917      121709 :     assert(PyLong_Check(a));
    4918      121709 :     if (Py_SIZE(a) == 0) {
    4919           0 :         return PyLong_FromLong(0);
    4920             :     }
    4921      121709 :     wordshift = shiftby / PyLong_SHIFT;
    4922      121709 :     remshift = shiftby % PyLong_SHIFT;
    4923      121709 :     return long_lshift1((PyLongObject *)a, wordshift, remshift);
    4924             : }
    4925             : 
    4926             : /* Compute two's complement of digit vector a[0:m], writing result to
    4927             :    z[0:m].  The digit vector a need not be normalized, but should not
    4928             :    be entirely zero.  a and z may point to the same digit vector. */
    4929             : 
    4930             : static void
    4931      727626 : v_complement(digit *z, digit *a, Py_ssize_t m)
    4932             : {
    4933             :     Py_ssize_t i;
    4934      727626 :     digit carry = 1;
    4935     4585800 :     for (i = 0; i < m; ++i) {
    4936     3858180 :         carry += a[i] ^ PyLong_MASK;
    4937     3858180 :         z[i] = carry & PyLong_MASK;
    4938     3858180 :         carry >>= PyLong_SHIFT;
    4939             :     }
    4940      727626 :     assert(carry == 0);
    4941      727626 : }
    4942             : 
    4943             : /* Bitwise and/xor/or operations */
    4944             : 
    4945             : static PyObject *
    4946     1975710 : long_bitwise(PyLongObject *a,
    4947             :              char op,  /* '&', '|', '^' */
    4948             :              PyLongObject *b)
    4949             : {
    4950             :     int nega, negb, negz;
    4951             :     Py_ssize_t size_a, size_b, size_z, i;
    4952             :     PyLongObject *z;
    4953             : 
    4954             :     /* Bitwise operations for negative numbers operate as though
    4955             :        on a two's complement representation.  So convert arguments
    4956             :        from sign-magnitude to two's complement, and convert the
    4957             :        result back to sign-magnitude at the end. */
    4958             : 
    4959             :     /* If a is negative, replace it by its two's complement. */
    4960     1975710 :     size_a = Py_ABS(Py_SIZE(a));
    4961     1975710 :     nega = Py_SIZE(a) < 0;
    4962     1975710 :     if (nega) {
    4963      609514 :         z = _PyLong_New(size_a);
    4964      609514 :         if (z == NULL)
    4965           0 :             return NULL;
    4966      609514 :         v_complement(z->ob_digit, a->ob_digit, size_a);
    4967      609514 :         a = z;
    4968             :     }
    4969             :     else
    4970             :         /* Keep reference count consistent. */
    4971     1366200 :         Py_INCREF(a);
    4972             : 
    4973             :     /* Same for b. */
    4974     1975710 :     size_b = Py_ABS(Py_SIZE(b));
    4975     1975710 :     negb = Py_SIZE(b) < 0;
    4976     1975710 :     if (negb) {
    4977       68546 :         z = _PyLong_New(size_b);
    4978       68546 :         if (z == NULL) {
    4979           0 :             Py_DECREF(a);
    4980           0 :             return NULL;
    4981             :         }
    4982       68546 :         v_complement(z->ob_digit, b->ob_digit, size_b);
    4983       68546 :         b = z;
    4984             :     }
    4985             :     else
    4986     1907160 :         Py_INCREF(b);
    4987             : 
    4988             :     /* Swap a and b if necessary to ensure size_a >= size_b. */
    4989     1975710 :     if (size_a < size_b) {
    4990      282002 :         z = a; a = b; b = z;
    4991      282002 :         size_z = size_a; size_a = size_b; size_b = size_z;
    4992      282002 :         negz = nega; nega = negb; negb = negz;
    4993             :     }
    4994             : 
    4995             :     /* JRH: The original logic here was to allocate the result value (z)
    4996             :        as the longer of the two operands.  However, there are some cases
    4997             :        where the result is guaranteed to be shorter than that: AND of two
    4998             :        positives, OR of two negatives: use the shorter number.  AND with
    4999             :        mixed signs: use the positive number.  OR with mixed signs: use the
    5000             :        negative number.
    5001             :     */
    5002     1975710 :     switch (op) {
    5003       61178 :     case '^':
    5004       61178 :         negz = nega ^ negb;
    5005       61178 :         size_z = size_a;
    5006       61178 :         break;
    5007     1762810 :     case '&':
    5008     1762810 :         negz = nega & negb;
    5009     1762810 :         size_z = negb ? size_a : size_b;
    5010     1762810 :         break;
    5011      151718 :     case '|':
    5012      151718 :         negz = nega | negb;
    5013      151718 :         size_z = negb ? size_b : size_a;
    5014      151718 :         break;
    5015           0 :     default:
    5016           0 :         Py_UNREACHABLE();
    5017             :     }
    5018             : 
    5019             :     /* We allow an extra digit if z is negative, to make sure that
    5020             :        the final two's complement of z doesn't overflow. */
    5021     1975710 :     z = _PyLong_New(size_z + negz);
    5022     1975710 :     if (z == NULL) {
    5023           0 :         Py_DECREF(a);
    5024           0 :         Py_DECREF(b);
    5025           0 :         return NULL;
    5026             :     }
    5027             : 
    5028             :     /* Compute digits for overlap of a and b. */
    5029     1975710 :     switch(op) {
    5030     1762810 :     case '&':
    5031     3808990 :         for (i = 0; i < size_b; ++i)
    5032     2046180 :             z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i];
    5033     1762810 :         break;
    5034      151718 :     case '|':
    5035      360724 :         for (i = 0; i < size_b; ++i)
    5036      209006 :             z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i];
    5037      151718 :         break;
    5038       61178 :     case '^':
    5039     1158330 :         for (i = 0; i < size_b; ++i)
    5040     1097150 :             z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i];
    5041       61178 :         break;
    5042           0 :     default:
    5043           0 :         Py_UNREACHABLE();
    5044             :     }
    5045             : 
    5046             :     /* Copy any remaining digits of a, inverting if necessary. */
    5047     1975710 :     if (op == '^' && negb)
    5048      262499 :         for (; i < size_z; ++i)
    5049      236842 :             z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK;
    5050     1950050 :     else if (i < size_z)
    5051      195030 :         memcpy(&z->ob_digit[i], &a->ob_digit[i],
    5052      195030 :                (size_z-i)*sizeof(digit));
    5053             : 
    5054             :     /* Complement result if negative. */
    5055     1975710 :     if (negz) {
    5056       49566 :         Py_SET_SIZE(z, -(Py_SIZE(z)));
    5057       49566 :         z->ob_digit[size_z] = PyLong_MASK;
    5058       49566 :         v_complement(z->ob_digit, z->ob_digit, size_z+1);
    5059             :     }
    5060             : 
    5061     1975710 :     Py_DECREF(a);
    5062     1975710 :     Py_DECREF(b);
    5063     1975710 :     return (PyObject *)maybe_small_long(long_normalize(z));
    5064             : }
    5065             : 
    5066             : static PyObject *
    5067     7660700 : long_and(PyObject *a, PyObject *b)
    5068             : {
    5069     7660700 :     CHECK_BINOP(a, b);
    5070     7660690 :     PyLongObject *x = (PyLongObject*)a;
    5071     7660690 :     PyLongObject *y = (PyLongObject*)b;
    5072     7660690 :     if (IS_MEDIUM_VALUE(x) && IS_MEDIUM_VALUE(y)) {
    5073     5897880 :         return _PyLong_FromSTwoDigits(medium_value(x) & medium_value(y));
    5074             :     }
    5075     1762810 :     return long_bitwise(x, '&', y);
    5076             : }
    5077             : 
    5078             : static PyObject *
    5079      400123 : long_xor(PyObject *a, PyObject *b)
    5080             : {
    5081      400123 :     CHECK_BINOP(a, b);
    5082      400112 :     PyLongObject *x = (PyLongObject*)a;
    5083      400112 :     PyLongObject *y = (PyLongObject*)b;
    5084      400112 :     if (IS_MEDIUM_VALUE(x) && IS_MEDIUM_VALUE(y)) {
    5085      338934 :         return _PyLong_FromSTwoDigits(medium_value(x) ^ medium_value(y));
    5086             :     }
    5087       61178 :     return long_bitwise(x, '^', y);
    5088             : }
    5089             : 
    5090             : static PyObject *
    5091     2151900 : long_or(PyObject *a, PyObject *b)
    5092             : {
    5093     2151900 :     CHECK_BINOP(a, b);
    5094     2151880 :     PyLongObject *x = (PyLongObject*)a;
    5095     2151880 :     PyLongObject *y = (PyLongObject*)b;
    5096     2151880 :     if (IS_MEDIUM_VALUE(x) && IS_MEDIUM_VALUE(y)) {
    5097     2000170 :         return _PyLong_FromSTwoDigits(medium_value(x) | medium_value(y));
    5098             :     }
    5099      151718 :     return long_bitwise(x, '|', y);
    5100             : }
    5101             : 
    5102             : static PyObject *
    5103     3154910 : long_long(PyObject *v)
    5104             : {
    5105     3154910 :     if (PyLong_CheckExact(v))
    5106     2733560 :         Py_INCREF(v);
    5107             :     else
    5108      421347 :         v = _PyLong_Copy((PyLongObject *)v);
    5109     3154910 :     return v;
    5110             : }
    5111             : 
    5112             : PyObject *
    5113      500155 : _PyLong_GCD(PyObject *aarg, PyObject *barg)
    5114             : {
    5115      500155 :     PyLongObject *a, *b, *c = NULL, *d = NULL, *r;
    5116             :     stwodigits x, y, q, s, t, c_carry, d_carry;
    5117             :     stwodigits A, B, C, D, T;
    5118             :     int nbits, k;
    5119             :     Py_ssize_t size_a, size_b, alloc_a, alloc_b;
    5120             :     digit *a_digit, *b_digit, *c_digit, *d_digit, *a_end, *b_end;
    5121             : 
    5122      500155 :     a = (PyLongObject *)aarg;
    5123      500155 :     b = (PyLongObject *)barg;
    5124      500155 :     size_a = Py_SIZE(a);
    5125      500155 :     size_b = Py_SIZE(b);
    5126      500155 :     if (-2 <= size_a && size_a <= 2 && -2 <= size_b && size_b <= 2) {
    5127      320183 :         Py_INCREF(a);
    5128      320183 :         Py_INCREF(b);
    5129      320183 :         goto simple;
    5130             :     }
    5131             : 
    5132             :     /* Initial reduction: make sure that 0 <= b <= a. */
    5133      179972 :     a = (PyLongObject *)long_abs(a);
    5134      179972 :     if (a == NULL)
    5135           0 :         return NULL;
    5136      179972 :     b = (PyLongObject *)long_abs(b);
    5137      179972 :     if (b == NULL) {
    5138           0 :         Py_DECREF(a);
    5139           0 :         return NULL;
    5140             :     }
    5141      179972 :     if (long_compare(a, b) < 0) {
    5142      106525 :         r = a;
    5143      106525 :         a = b;
    5144      106525 :         b = r;
    5145             :     }
    5146             :     /* We now own references to a and b */
    5147             : 
    5148      179972 :     alloc_a = Py_SIZE(a);
    5149      179972 :     alloc_b = Py_SIZE(b);
    5150             :     /* reduce until a fits into 2 digits */
    5151      394942 :     while ((size_a = Py_SIZE(a)) > 2) {
    5152      279346 :         nbits = bit_length_digit(a->ob_digit[size_a-1]);
    5153             :         /* extract top 2*PyLong_SHIFT bits of a into x, along with
    5154             :            corresponding bits of b into y */
    5155      279346 :         size_b = Py_SIZE(b);
    5156      279346 :         assert(size_b <= size_a);
    5157      279346 :         if (size_b == 0) {
    5158       64376 :             if (size_a < alloc_a) {
    5159          16 :                 r = (PyLongObject *)_PyLong_Copy(a);
    5160          16 :                 Py_DECREF(a);
    5161             :             }
    5162             :             else
    5163       64360 :                 r = a;
    5164       64376 :             Py_DECREF(b);
    5165       64376 :             Py_XDECREF(c);
    5166       64376 :             Py_XDECREF(d);
    5167       64376 :             return (PyObject *)r;
    5168             :         }
    5169      214970 :         x = (((twodigits)a->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits)) |
    5170      214970 :              ((twodigits)a->ob_digit[size_a-2] << (PyLong_SHIFT-nbits)) |
    5171      214970 :              (a->ob_digit[size_a-3] >> nbits));
    5172             : 
    5173      214970 :         y = ((size_b >= size_a - 2 ? b->ob_digit[size_a-3] >> nbits : 0) |
    5174      214970 :              (size_b >= size_a - 1 ? (twodigits)b->ob_digit[size_a-2] << (PyLong_SHIFT-nbits) : 0) |
    5175      214970 :              (size_b >= size_a ? (twodigits)b->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits) : 0));
    5176             : 
    5177             :         /* inner loop of Lehmer's algorithm; A, B, C, D never grow
    5178             :            larger than PyLong_MASK during the algorithm. */
    5179      214970 :         A = 1; B = 0; C = 0; D = 1;
    5180      214970 :         for (k=0;; k++) {
    5181     1123310 :             if (y-C == 0)
    5182       42990 :                 break;
    5183     1080320 :             q = (x+(A-1))/(y-C);
    5184     1080320 :             s = B+q*D;
    5185     1080320 :             t = x-q*y;
    5186     1080320 :             if (s > t)
    5187      171980 :                 break;
    5188      908339 :             x = y; y = t;
    5189      908339 :             t = A+q*C; A = D; B = C; C = s; D = t;
    5190             :         }
    5191             : 
    5192      214970 :         if (k == 0) {
    5193             :             /* no progress; do a Euclidean step */
    5194      140542 :             if (l_mod(a, b, &r) < 0)
    5195           0 :                 goto error;
    5196      140542 :             Py_DECREF(a);
    5197      140542 :             a = b;
    5198      140542 :             b = r;
    5199      140542 :             alloc_a = alloc_b;
    5200      140542 :             alloc_b = Py_SIZE(b);
    5201      140542 :             continue;
    5202             :         }
    5203             : 
    5204             :         /*
    5205             :           a, b = A*b-B*a, D*a-C*b if k is odd
    5206             :           a, b = A*a-B*b, D*b-C*a if k is even
    5207             :         */
    5208       74428 :         if (k&1) {
    5209       37573 :             T = -A; A = -B; B = T;
    5210       37573 :             T = -C; C = -D; D = T;
    5211             :         }
    5212       74428 :         if (c != NULL) {
    5213       24485 :             Py_SET_SIZE(c, size_a);
    5214             :         }
    5215       49943 :         else if (Py_REFCNT(a) == 1) {
    5216          16 :             Py_INCREF(a);
    5217          16 :             c = a;
    5218             :         }
    5219             :         else {
    5220       49927 :             alloc_a = size_a;
    5221       49927 :             c = _PyLong_New(size_a);
    5222       49927 :             if (c == NULL)
    5223           0 :                 goto error;
    5224             :         }
    5225             : 
    5226       74428 :         if (d != NULL) {
    5227       24485 :             Py_SET_SIZE(d, size_a);
    5228             :         }
    5229       49943 :         else if (Py_REFCNT(b) == 1 && size_a <= alloc_b) {
    5230       11109 :             Py_INCREF(b);
    5231       11109 :             d = b;
    5232       11109 :             Py_SET_SIZE(d, size_a);
    5233             :         }
    5234             :         else {
    5235       38834 :             alloc_b = size_a;
    5236       38834 :             d = _PyLong_New(size_a);
    5237       38834 :             if (d == NULL)
    5238           0 :                 goto error;
    5239             :         }
    5240       74428 :         a_end = a->ob_digit + size_a;
    5241       74428 :         b_end = b->ob_digit + size_b;
    5242             : 
    5243             :         /* compute new a and new b in parallel */
    5244       74428 :         a_digit = a->ob_digit;
    5245       74428 :         b_digit = b->ob_digit;
    5246       74428 :         c_digit = c->ob_digit;
    5247       74428 :         d_digit = d->ob_digit;
    5248       74428 :         c_carry = 0;
    5249       74428 :         d_carry = 0;
    5250      294719 :         while (b_digit < b_end) {
    5251      220291 :             c_carry += (A * *a_digit) - (B * *b_digit);
    5252      220291 :             d_carry += (D * *b_digit++) - (C * *a_digit++);
    5253      220291 :             *c_digit++ = (digit)(c_carry & PyLong_MASK);
    5254      220291 :             *d_digit++ = (digit)(d_carry & PyLong_MASK);
    5255      220291 :             c_carry >>= PyLong_SHIFT;
    5256      220291 :             d_carry >>= PyLong_SHIFT;
    5257             :         }
    5258      109981 :         while (a_digit < a_end) {
    5259       35553 :             c_carry += A * *a_digit;
    5260       35553 :             d_carry -= C * *a_digit++;
    5261       35553 :             *c_digit++ = (digit)(c_carry & PyLong_MASK);
    5262       35553 :             *d_digit++ = (digit)(d_carry & PyLong_MASK);
    5263       35553 :             c_carry >>= PyLong_SHIFT;
    5264       35553 :             d_carry >>= PyLong_SHIFT;
    5265             :         }
    5266       74428 :         assert(c_carry == 0);
    5267       74428 :         assert(d_carry == 0);
    5268             : 
    5269       74428 :         Py_INCREF(c);
    5270       74428 :         Py_INCREF(d);
    5271       74428 :         Py_DECREF(a);
    5272       74428 :         Py_DECREF(b);
    5273       74428 :         a = long_normalize(c);
    5274       74428 :         b = long_normalize(d);
    5275             :     }
    5276      115596 :     Py_XDECREF(c);
    5277      115596 :     Py_XDECREF(d);
    5278             : 
    5279      435779 : simple:
    5280      435779 :     assert(Py_REFCNT(a) > 0);
    5281      435779 :     assert(Py_REFCNT(b) > 0);
    5282             : /* Issue #24999: use two shifts instead of ">> 2*PyLong_SHIFT" to avoid
    5283             :    undefined behaviour when LONG_MAX type is smaller than 60 bits */
    5284             : #if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
    5285             :     /* a fits into a long, so b must too */
    5286      435779 :     x = PyLong_AsLong((PyObject *)a);
    5287      435779 :     y = PyLong_AsLong((PyObject *)b);
    5288             : #elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
    5289             :     x = PyLong_AsLongLong((PyObject *)a);
    5290             :     y = PyLong_AsLongLong((PyObject *)b);
    5291             : #else
    5292             : # error "_PyLong_GCD"
    5293             : #endif
    5294      435779 :     x = Py_ABS(x);
    5295      435779 :     y = Py_ABS(y);
    5296      435779 :     Py_DECREF(a);
    5297      435779 :     Py_DECREF(b);
    5298             : 
    5299             :     /* usual Euclidean algorithm for longs */
    5300     4806980 :     while (y != 0) {
    5301     4371200 :         t = y;
    5302     4371200 :         y = x % y;
    5303     4371200 :         x = t;
    5304             :     }
    5305             : #if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
    5306      435779 :     return PyLong_FromLong(x);
    5307             : #elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
    5308             :     return PyLong_FromLongLong(x);
    5309             : #else
    5310             : # error "_PyLong_GCD"
    5311             : #endif
    5312             : 
    5313           0 : error:
    5314           0 :     Py_DECREF(a);
    5315           0 :     Py_DECREF(b);
    5316           0 :     Py_XDECREF(c);
    5317           0 :     Py_XDECREF(d);
    5318           0 :     return NULL;
    5319             : }
    5320             : 
    5321             : static PyObject *
    5322     3586380 : long_float(PyObject *v)
    5323             : {
    5324             :     double result;
    5325     3586380 :     result = PyLong_AsDouble(v);
    5326     3586380 :     if (result == -1.0 && PyErr_Occurred())
    5327          52 :         return NULL;
    5328     3586330 :     return PyFloat_FromDouble(result);
    5329             : }
    5330             : 
    5331             : static PyObject *
    5332             : long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase);
    5333             : 
    5334             : /*[clinic input]
    5335             : @classmethod
    5336             : int.__new__ as long_new
    5337             :     x: object(c_default="NULL") = 0
    5338             :     /
    5339             :     base as obase: object(c_default="NULL") = 10
    5340             : [clinic start generated code]*/
    5341             : 
    5342             : static PyObject *
    5343     4654510 : long_new_impl(PyTypeObject *type, PyObject *x, PyObject *obase)
    5344             : /*[clinic end generated code: output=e47cfe777ab0f24c input=81c98f418af9eb6f]*/
    5345             : {
    5346             :     Py_ssize_t base;
    5347             : 
    5348     4654510 :     if (type != &PyLong_Type)
    5349      402099 :         return long_subtype_new(type, x, obase); /* Wimp out */
    5350     4252410 :     if (x == NULL) {
    5351       23258 :         if (obase != NULL) {
    5352           2 :             PyErr_SetString(PyExc_TypeError,
    5353             :                             "int() missing string argument");
    5354           2 :             return NULL;
    5355             :         }
    5356       23256 :         return PyLong_FromLong(0L);
    5357             :     }
    5358     4229150 :     if (obase == NULL)
    5359     3295730 :         return PyNumber_Long(x);
    5360             : 
    5361      933419 :     base = PyNumber_AsSsize_t(obase, NULL);
    5362      933419 :     if (base == -1 && PyErr_Occurred())
    5363           2 :         return NULL;
    5364      933417 :     if ((base != 0 && base < 2) || base > 36) {
    5365          20 :         PyErr_SetString(PyExc_ValueError,
    5366             :                         "int() base must be >= 2 and <= 36, or 0");
    5367          20 :         return NULL;
    5368             :     }
    5369             : 
    5370      933397 :     if (PyUnicode_Check(x))
    5371      576546 :         return PyLong_FromUnicodeObject(x, (int)base);
    5372      356851 :     else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
    5373             :         const char *string;
    5374      356848 :         if (PyByteArray_Check(x))
    5375      309762 :             string = PyByteArray_AS_STRING(x);
    5376             :         else
    5377       47086 :             string = PyBytes_AS_STRING(x);
    5378      356848 :         return _PyLong_FromBytes(string, Py_SIZE(x), (int)base);
    5379             :     }
    5380             :     else {
    5381           3 :         PyErr_SetString(PyExc_TypeError,
    5382             :                         "int() can't convert non-string with explicit base");
    5383           3 :         return NULL;
    5384             :     }
    5385             : }
    5386             : 
    5387             : /* Wimpy, slow approach to tp_new calls for subtypes of int:
    5388             :    first create a regular int from whatever arguments we got,
    5389             :    then allocate a subtype instance and initialize it from
    5390             :    the regular int.  The regular int is then thrown away.
    5391             : */
    5392             : static PyObject *
    5393      402099 : long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase)
    5394             : {
    5395             :     PyLongObject *tmp, *newobj;
    5396             :     Py_ssize_t i, n;
    5397             : 
    5398      402099 :     assert(PyType_IsSubtype(type, &PyLong_Type));
    5399      402099 :     tmp = (PyLongObject *)long_new_impl(&PyLong_Type, x, obase);
    5400      402099 :     if (tmp == NULL)
    5401           0 :         return NULL;
    5402      402099 :     assert(PyLong_Check(tmp));
    5403      402099 :     n = Py_SIZE(tmp);
    5404      402099 :     if (n < 0)
    5405         865 :         n = -n;
    5406      402099 :     newobj = (PyLongObject *)type->tp_alloc(type, n);
    5407      402099 :     if (newobj == NULL) {
    5408           0 :         Py_DECREF(tmp);
    5409           0 :         return NULL;
    5410             :     }
    5411      402099 :     assert(PyLong_Check(newobj));
    5412      402099 :     Py_SET_SIZE(newobj, Py_SIZE(tmp));
    5413      791507 :     for (i = 0; i < n; i++) {
    5414      389408 :         newobj->ob_digit[i] = tmp->ob_digit[i];
    5415             :     }
    5416      402099 :     Py_DECREF(tmp);
    5417      402099 :     return (PyObject *)newobj;
    5418             : }
    5419             : 
    5420             : /*[clinic input]
    5421             : int.__getnewargs__
    5422             : [clinic start generated code]*/
    5423             : 
    5424             : static PyObject *
    5425         102 : int___getnewargs___impl(PyObject *self)
    5426             : /*[clinic end generated code: output=839a49de3f00b61b input=5904770ab1fb8c75]*/
    5427             : {
    5428         102 :     return Py_BuildValue("(N)", _PyLong_Copy((PyLongObject *)self));
    5429             : }
    5430             : 
    5431             : static PyObject *
    5432         136 : long_get0(PyObject *Py_UNUSED(self), void *Py_UNUSED(context))
    5433             : {
    5434         136 :     return PyLong_FromLong(0L);
    5435             : }
    5436             : 
    5437             : static PyObject *
    5438      261416 : long_get1(PyObject *Py_UNUSED(self), void *Py_UNUSED(ignored))
    5439             : {
    5440      261416 :     return PyLong_FromLong(1L);
    5441             : }
    5442             : 
    5443             : /*[clinic input]
    5444             : int.__format__
    5445             : 
    5446             :     format_spec: unicode
    5447             :     /
    5448             : [clinic start generated code]*/
    5449             : 
    5450             : static PyObject *
    5451     3643250 : int___format___impl(PyObject *self, PyObject *format_spec)
    5452             : /*[clinic end generated code: output=b4929dee9ae18689 input=e31944a9b3e428b7]*/
    5453             : {
    5454             :     _PyUnicodeWriter writer;
    5455             :     int ret;
    5456             : 
    5457     3643250 :     _PyUnicodeWriter_Init(&writer);
    5458     3643250 :     ret = _PyLong_FormatAdvancedWriter(
    5459             :         &writer,
    5460             :         self,
    5461             :         format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
    5462     3643250 :     if (ret == -1) {
    5463         350 :         _PyUnicodeWriter_Dealloc(&writer);
    5464         350 :         return NULL;
    5465             :     }
    5466     3642900 :     return _PyUnicodeWriter_Finish(&writer);
    5467             : }
    5468             : 
    5469             : /* Return a pair (q, r) such that a = b * q + r, and
    5470             :    abs(r) <= abs(b)/2, with equality possible only if q is even.
    5471             :    In other words, q == a / b, rounded to the nearest integer using
    5472             :    round-half-to-even. */
    5473             : 
    5474             : PyObject *
    5475        1568 : _PyLong_DivmodNear(PyObject *a, PyObject *b)
    5476             : {
    5477        1568 :     PyLongObject *quo = NULL, *rem = NULL;
    5478             :     PyObject *twice_rem, *result, *temp;
    5479             :     int quo_is_odd, quo_is_neg;
    5480             :     Py_ssize_t cmp;
    5481             : 
    5482             :     /* Equivalent Python code:
    5483             : 
    5484             :        def divmod_near(a, b):
    5485             :            q, r = divmod(a, b)
    5486             :            # round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
    5487             :            # The expression r / b > 0.5 is equivalent to 2 * r > b if b is
    5488             :            # positive, 2 * r < b if b negative.
    5489             :            greater_than_half = 2*r > b if b > 0 else 2*r < b
    5490             :            exactly_half = 2*r == b
    5491             :            if greater_than_half or exactly_half and q % 2 == 1:
    5492             :                q += 1
    5493             :                r -= b
    5494             :            return q, r
    5495             : 
    5496             :     */
    5497        1568 :     if (!PyLong_Check(a) || !PyLong_Check(b)) {
    5498           0 :         PyErr_SetString(PyExc_TypeError,
    5499             :                         "non-integer arguments in division");
    5500           0 :         return NULL;
    5501             :     }
    5502             : 
    5503             :     /* Do a and b have different signs?  If so, quotient is negative. */
    5504        1568 :     quo_is_neg = (Py_SIZE(a) < 0) != (Py_SIZE(b) < 0);
    5505             : 
    5506        1568 :     if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0)
    5507           2 :         goto error;
    5508             : 
    5509             :     /* compare twice the remainder with the divisor, to see
    5510             :        if we need to adjust the quotient and remainder */
    5511        1566 :     PyObject *one = _PyLong_GetOne();  // borrowed reference
    5512        1566 :     twice_rem = long_lshift((PyObject *)rem, one);
    5513        1566 :     if (twice_rem == NULL)
    5514           0 :         goto error;
    5515        1566 :     if (quo_is_neg) {
    5516         555 :         temp = long_neg((PyLongObject*)twice_rem);
    5517         555 :         Py_DECREF(twice_rem);
    5518         555 :         twice_rem = temp;
    5519         555 :         if (twice_rem == NULL)
    5520           0 :             goto error;
    5521             :     }
    5522        1566 :     cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b);
    5523        1566 :     Py_DECREF(twice_rem);
    5524             : 
    5525        1566 :     quo_is_odd = Py_SIZE(quo) != 0 && ((quo->ob_digit[0] & 1) != 0);
    5526        1566 :     if ((Py_SIZE(b) < 0 ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) {
    5527             :         /* fix up quotient */
    5528         591 :         if (quo_is_neg)
    5529         247 :             temp = long_sub(quo, (PyLongObject *)one);
    5530             :         else
    5531         344 :             temp = long_add(quo, (PyLongObject *)one);
    5532         591 :         Py_DECREF(quo);
    5533         591 :         quo = (PyLongObject *)temp;
    5534         591 :         if (quo == NULL)
    5535           0 :             goto error;
    5536             :         /* and remainder */
    5537         591 :         if (quo_is_neg)
    5538         247 :             temp = long_add(rem, (PyLongObject *)b);
    5539             :         else
    5540         344 :             temp = long_sub(rem, (PyLongObject *)b);
    5541         591 :         Py_DECREF(rem);
    5542         591 :         rem = (PyLongObject *)temp;
    5543         591 :         if (rem == NULL)
    5544           0 :             goto error;
    5545             :     }
    5546             : 
    5547        1566 :     result = PyTuple_New(2);
    5548        1566 :     if (result == NULL)
    5549           0 :         goto error;
    5550             : 
    5551             :     /* PyTuple_SET_ITEM steals references */
    5552        1566 :     PyTuple_SET_ITEM(result, 0, (PyObject *)quo);
    5553        1566 :     PyTuple_SET_ITEM(result, 1, (PyObject *)rem);
    5554        1566 :     return result;
    5555             : 
    5556           2 :   error:
    5557           2 :     Py_XDECREF(quo);
    5558           2 :     Py_XDECREF(rem);
    5559           2 :     return NULL;
    5560             : }
    5561             : 
    5562             : /*[clinic input]
    5563             : int.__round__
    5564             : 
    5565             :     ndigits as o_ndigits: object = NULL
    5566             :     /
    5567             : 
    5568             : Rounding an Integral returns itself.
    5569             : 
    5570             : Rounding with an ndigits argument also returns an integer.
    5571             : [clinic start generated code]*/
    5572             : 
    5573             : static PyObject *
    5574        1855 : int___round___impl(PyObject *self, PyObject *o_ndigits)
    5575             : /*[clinic end generated code: output=954fda6b18875998 input=1614cf23ec9e18c3]*/
    5576             : {
    5577             :     PyObject *temp, *result, *ndigits;
    5578             : 
    5579             :     /* To round an integer m to the nearest 10**n (n positive), we make use of
    5580             :      * the divmod_near operation, defined by:
    5581             :      *
    5582             :      *   divmod_near(a, b) = (q, r)
    5583             :      *
    5584             :      * where q is the nearest integer to the quotient a / b (the
    5585             :      * nearest even integer in the case of a tie) and r == a - q * b.
    5586             :      * Hence q * b = a - r is the nearest multiple of b to a,
    5587             :      * preferring even multiples in the case of a tie.
    5588             :      *
    5589             :      * So the nearest multiple of 10**n to m is:
    5590             :      *
    5591             :      *   m - divmod_near(m, 10**n)[1].
    5592             :      */
    5593        1855 :     if (o_ndigits == NULL)
    5594         168 :         return long_long(self);
    5595             : 
    5596        1687 :     ndigits = _PyNumber_Index(o_ndigits);
    5597        1687 :     if (ndigits == NULL)
    5598           3 :         return NULL;
    5599             : 
    5600             :     /* if ndigits >= 0 then no rounding is necessary; return self unchanged */
    5601        1684 :     if (Py_SIZE(ndigits) >= 0) {
    5602         523 :         Py_DECREF(ndigits);
    5603         523 :         return long_long(self);
    5604             :     }
    5605             : 
    5606             :     /* result = self - divmod_near(self, 10 ** -ndigits)[1] */
    5607        1161 :     temp = long_neg((PyLongObject*)ndigits);
    5608        1161 :     Py_DECREF(ndigits);
    5609        1161 :     ndigits = temp;
    5610        1161 :     if (ndigits == NULL)
    5611           0 :         return NULL;
    5612             : 
    5613        1161 :     result = PyLong_FromLong(10L);
    5614        1161 :     if (result == NULL) {
    5615           0 :         Py_DECREF(ndigits);
    5616           0 :         return NULL;
    5617             :     }
    5618             : 
    5619        1161 :     temp = long_pow(result, ndigits, Py_None);
    5620        1161 :     Py_DECREF(ndigits);
    5621        1161 :     Py_DECREF(result);
    5622        1161 :     result = temp;
    5623        1161 :     if (result == NULL)
    5624           0 :         return NULL;
    5625             : 
    5626        1161 :     temp = _PyLong_DivmodNear(self, result);
    5627        1161 :     Py_DECREF(result);
    5628        1161 :     result = temp;
    5629        1161 :     if (result == NULL)
    5630           0 :         return NULL;
    5631             : 
    5632        1161 :     temp = long_sub((PyLongObject *)self,
    5633        1161 :                     (PyLongObject *)PyTuple_GET_ITEM(result, 1));
    5634        1161 :     Py_DECREF(result);
    5635        1161 :     result = temp;
    5636             : 
    5637        1161 :     return result;
    5638             : }
    5639             : 
    5640             : /*[clinic input]
    5641             : int.__sizeof__ -> Py_ssize_t
    5642             : 
    5643             : Returns size in memory, in bytes.
    5644             : [clinic start generated code]*/
    5645             : 
    5646             : static Py_ssize_t
    5647          12 : int___sizeof___impl(PyObject *self)
    5648             : /*[clinic end generated code: output=3303f008eaa6a0a5 input=9b51620c76fc4507]*/
    5649             : {
    5650             :     Py_ssize_t res;
    5651             : 
    5652          12 :     res = offsetof(PyLongObject, ob_digit) + Py_ABS(Py_SIZE(self))*sizeof(digit);
    5653          12 :     return res;
    5654             : }
    5655             : 
    5656             : /*[clinic input]
    5657             : int.bit_length
    5658             : 
    5659             : Number of bits necessary to represent self in binary.
    5660             : 
    5661             : >>> bin(37)
    5662             : '0b100101'
    5663             : >>> (37).bit_length()
    5664             : 6
    5665             : [clinic start generated code]*/
    5666             : 
    5667             : static PyObject *
    5668     4923740 : int_bit_length_impl(PyObject *self)
    5669             : /*[clinic end generated code: output=fc1977c9353d6a59 input=e4eb7a587e849a32]*/
    5670             : {
    5671             :     PyLongObject *result, *x, *y;
    5672             :     Py_ssize_t ndigits;
    5673             :     int msd_bits;
    5674             :     digit msd;
    5675             : 
    5676     4923740 :     assert(self != NULL);
    5677     4923740 :     assert(PyLong_Check(self));
    5678             : 
    5679     4923740 :     ndigits = Py_ABS(Py_SIZE(self));
    5680     4923740 :     if (ndigits == 0)
    5681       23214 :         return PyLong_FromLong(0);
    5682             : 
    5683     4900520 :     msd = ((PyLongObject *)self)->ob_digit[ndigits-1];
    5684     4900520 :     msd_bits = bit_length_digit(msd);
    5685             : 
    5686     4900520 :     if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
    5687     4900520 :         return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
    5688             : 
    5689             :     /* expression above may overflow; use Python integers instead */
    5690           0 :     result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
    5691           0 :     if (result == NULL)
    5692           0 :         return NULL;
    5693           0 :     x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
    5694           0 :     if (x == NULL)
    5695           0 :         goto error;
    5696           0 :     y = (PyLongObject *)long_mul(result, x);
    5697           0 :     Py_DECREF(x);
    5698           0 :     if (y == NULL)
    5699           0 :         goto error;
    5700           0 :     Py_DECREF(result);
    5701           0 :     result = y;
    5702             : 
    5703           0 :     x = (PyLongObject *)PyLong_FromLong((long)msd_bits);
    5704           0 :     if (x == NULL)
    5705           0 :         goto error;
    5706           0 :     y = (PyLongObject *)long_add(result, x);
    5707           0 :     Py_DECREF(x);
    5708           0 :     if (y == NULL)
    5709           0 :         goto error;
    5710           0 :     Py_DECREF(result);
    5711           0 :     result = y;
    5712             : 
    5713           0 :     return (PyObject *)result;
    5714             : 
    5715           0 :   error:
    5716           0 :     Py_DECREF(result);
    5717           0 :     return NULL;
    5718             : }
    5719             : 
    5720             : static int
    5721      176175 : popcount_digit(digit d)
    5722             : {
    5723             :     // digit can be larger than uint32_t, but only PyLong_SHIFT bits
    5724             :     // of it will be ever used.
    5725             :     static_assert(PyLong_SHIFT <= 32, "digit is larger than uint32_t");
    5726      176175 :     return _Py_popcount32((uint32_t)d);
    5727             : }
    5728             : 
    5729             : /*[clinic input]
    5730             : int.bit_count
    5731             : 
    5732             : Number of ones in the binary representation of the absolute value of self.
    5733             : 
    5734             : Also known as the population count.
    5735             : 
    5736             : >>> bin(13)
    5737             : '0b1101'
    5738             : >>> (13).bit_count()
    5739             : 3
    5740             : [clinic start generated code]*/
    5741             : 
    5742             : static PyObject *
    5743        2052 : int_bit_count_impl(PyObject *self)
    5744             : /*[clinic end generated code: output=2e571970daf1e5c3 input=7e0adef8e8ccdf2e]*/
    5745             : {
    5746        2052 :     assert(self != NULL);
    5747        2052 :     assert(PyLong_Check(self));
    5748             : 
    5749        2052 :     PyLongObject *z = (PyLongObject *)self;
    5750        2052 :     Py_ssize_t ndigits = Py_ABS(Py_SIZE(z));
    5751        2052 :     Py_ssize_t bit_count = 0;
    5752             : 
    5753             :     /* Each digit has up to PyLong_SHIFT ones, so the accumulated bit count
    5754             :        from the first PY_SSIZE_T_MAX/PyLong_SHIFT digits can't overflow a
    5755             :        Py_ssize_t. */
    5756        2052 :     Py_ssize_t ndigits_fast = Py_MIN(ndigits, PY_SSIZE_T_MAX/PyLong_SHIFT);
    5757      178227 :     for (Py_ssize_t i = 0; i < ndigits_fast; i++) {
    5758      176175 :         bit_count += popcount_digit(z->ob_digit[i]);
    5759             :     }
    5760             : 
    5761        2052 :     PyObject *result = PyLong_FromSsize_t(bit_count);
    5762        2052 :     if (result == NULL) {
    5763           0 :         return NULL;
    5764             :     }
    5765             : 
    5766             :     /* Use Python integers if bit_count would overflow. */
    5767        2052 :     for (Py_ssize_t i = ndigits_fast; i < ndigits; i++) {
    5768           0 :         PyObject *x = PyLong_FromLong(popcount_digit(z->ob_digit[i]));
    5769           0 :         if (x == NULL) {
    5770           0 :             goto error;
    5771             :         }
    5772           0 :         PyObject *y = long_add((PyLongObject *)result, (PyLongObject *)x);
    5773           0 :         Py_DECREF(x);
    5774           0 :         if (y == NULL) {
    5775           0 :             goto error;
    5776             :         }
    5777           0 :         Py_DECREF(result);
    5778           0 :         result = y;
    5779             :     }
    5780             : 
    5781        2052 :     return result;
    5782             : 
    5783           0 :   error:
    5784           0 :     Py_DECREF(result);
    5785           0 :     return NULL;
    5786             : }
    5787             : 
    5788             : /*[clinic input]
    5789             : int.as_integer_ratio
    5790             : 
    5791             : Return integer ratio.
    5792             : 
    5793             : Return a pair of integers, whose ratio is exactly equal to the original int
    5794             : and with a positive denominator.
    5795             : 
    5796             : >>> (10).as_integer_ratio()
    5797             : (10, 1)
    5798             : >>> (-10).as_integer_ratio()
    5799             : (-10, 1)
    5800             : >>> (0).as_integer_ratio()
    5801             : (0, 1)
    5802             : [clinic start generated code]*/
    5803             : 
    5804             : static PyObject *
    5805       79995 : int_as_integer_ratio_impl(PyObject *self)
    5806             : /*[clinic end generated code: output=e60803ae1cc8621a input=55ce3058e15de393]*/
    5807             : {
    5808             :     PyObject *ratio_tuple;
    5809       79995 :     PyObject *numerator = long_long(self);
    5810       79995 :     if (numerator == NULL) {
    5811           0 :         return NULL;
    5812             :     }
    5813       79995 :     ratio_tuple = PyTuple_Pack(2, numerator, _PyLong_GetOne());
    5814       79995 :     Py_DECREF(numerator);
    5815       79995 :     return ratio_tuple;
    5816             : }
    5817             : 
    5818             : /*[clinic input]
    5819             : int.to_bytes
    5820             : 
    5821             :     length: Py_ssize_t = 1
    5822             :         Length of bytes object to use.  An OverflowError is raised if the
    5823             :         integer is not representable with the given number of bytes.  Default
    5824             :         is length 1.
    5825             :     byteorder: unicode(c_default="NULL") = "big"
    5826             :         The byte order used to represent the integer.  If byteorder is 'big',
    5827             :         the most significant byte is at the beginning of the byte array.  If
    5828             :         byteorder is 'little', the most significant byte is at the end of the
    5829             :         byte array.  To request the native byte order of the host system, use
    5830             :         `sys.byteorder' as the byte order value.  Default is to use 'big'.
    5831             :     *
    5832             :     signed as is_signed: bool = False
    5833             :         Determines whether two's complement is used to represent the integer.
    5834             :         If signed is False and a negative integer is given, an OverflowError
    5835             :         is raised.
    5836             : 
    5837             : Return an array of bytes representing an integer.
    5838             : [clinic start generated code]*/
    5839             : 
    5840             : static PyObject *
    5841      230849 : int_to_bytes_impl(PyObject *self, Py_ssize_t length, PyObject *byteorder,
    5842             :                   int is_signed)
    5843             : /*[clinic end generated code: output=89c801df114050a3 input=d42ecfb545039d71]*/
    5844             : {
    5845             :     int little_endian;
    5846             :     PyObject *bytes;
    5847             : 
    5848      230849 :     if (byteorder == NULL)
    5849         967 :         little_endian = 0;
    5850      229882 :     else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
    5851       28158 :         little_endian = 1;
    5852      201724 :     else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
    5853      201724 :         little_endian = 0;
    5854             :     else {
    5855           0 :         PyErr_SetString(PyExc_ValueError,
    5856             :             "byteorder must be either 'little' or 'big'");
    5857           0 :         return NULL;
    5858             :     }
    5859             : 
    5860      230849 :     if (length < 0) {
    5861           0 :         PyErr_SetString(PyExc_ValueError,
    5862             :                         "length argument must be non-negative");
    5863           0 :         return NULL;
    5864             :     }
    5865             : 
    5866      230849 :     bytes = PyBytes_FromStringAndSize(NULL, length);
    5867      230849 :     if (bytes == NULL)
    5868           0 :         return NULL;
    5869             : 
    5870      230849 :     if (_PyLong_AsByteArray((PyLongObject *)self,
    5871      230849 :                             (unsigned char *)PyBytes_AS_STRING(bytes),
    5872             :                             length, little_endian, is_signed) < 0) {
    5873          11 :         Py_DECREF(bytes);
    5874          11 :         return NULL;
    5875             :     }
    5876             : 
    5877      230838 :     return bytes;
    5878             : }
    5879             : 
    5880             : /*[clinic input]
    5881             : @classmethod
    5882             : int.from_bytes
    5883             : 
    5884             :     bytes as bytes_obj: object
    5885             :         Holds the array of bytes to convert.  The argument must either
    5886             :         support the buffer protocol or be an iterable object producing bytes.
    5887             :         Bytes and bytearray are examples of built-in objects that support the
    5888             :         buffer protocol.
    5889             :     byteorder: unicode(c_default="NULL") = "big"
    5890             :         The byte order used to represent the integer.  If byteorder is 'big',
    5891             :         the most significant byte is at the beginning of the byte array.  If
    5892             :         byteorder is 'little', the most significant byte is at the end of the
    5893             :         byte array.  To request the native byte order of the host system, use
    5894             :         `sys.byteorder' as the byte order value.  Default is to use 'big'.
    5895             :     *
    5896             :     signed as is_signed: bool = False
    5897             :         Indicates whether two's complement is used to represent the integer.
    5898             : 
    5899             : Return the integer represented by the given array of bytes.
    5900             : [clinic start generated code]*/
    5901             : 
    5902             : static PyObject *
    5903      820199 : int_from_bytes_impl(PyTypeObject *type, PyObject *bytes_obj,
    5904             :                     PyObject *byteorder, int is_signed)
    5905             : /*[clinic end generated code: output=efc5d68e31f9314f input=33326dccdd655553]*/
    5906             : {
    5907             :     int little_endian;
    5908             :     PyObject *long_obj, *bytes;
    5909             : 
    5910      820199 :     if (byteorder == NULL)
    5911      165883 :         little_endian = 0;
    5912      654316 :     else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
    5913      652580 :         little_endian = 1;
    5914        1736 :     else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
    5915        1734 :         little_endian = 0;
    5916             :     else {
    5917           2 :         PyErr_SetString(PyExc_ValueError,
    5918             :             "byteorder must be either 'little' or 'big'");
    5919           2 :         return NULL;
    5920             :     }
    5921             : 
    5922      820197 :     bytes = PyObject_Bytes(bytes_obj);
    5923      820197 :     if (bytes == NULL)
    5924          71 :         return NULL;
    5925             : 
    5926      820126 :     long_obj = _PyLong_FromByteArray(
    5927      820126 :         (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes),
    5928             :         little_endian, is_signed);
    5929      820126 :     Py_DECREF(bytes);
    5930             : 
    5931      820126 :     if (long_obj != NULL && type != &PyLong_Type) {
    5932          14 :         Py_SETREF(long_obj, PyObject_CallOneArg((PyObject *)type, long_obj));
    5933             :     }
    5934             : 
    5935      820126 :     return long_obj;
    5936             : }
    5937             : 
    5938             : static PyObject *
    5939      261557 : long_long_meth(PyObject *self, PyObject *Py_UNUSED(ignored))
    5940             : {
    5941      261557 :     return long_long(self);
    5942             : }
    5943             : 
    5944             : static PyMethodDef long_methods[] = {
    5945             :     {"conjugate",       long_long_meth, METH_NOARGS,
    5946             :      "Returns self, the complex conjugate of any int."},
    5947             :     INT_BIT_LENGTH_METHODDEF
    5948             :     INT_BIT_COUNT_METHODDEF
    5949             :     INT_TO_BYTES_METHODDEF
    5950             :     INT_FROM_BYTES_METHODDEF
    5951             :     INT_AS_INTEGER_RATIO_METHODDEF
    5952             :     {"__trunc__",       long_long_meth, METH_NOARGS,
    5953             :      "Truncating an Integral returns itself."},
    5954             :     {"__floor__",       long_long_meth, METH_NOARGS,
    5955             :      "Flooring an Integral returns itself."},
    5956             :     {"__ceil__",        long_long_meth, METH_NOARGS,
    5957             :      "Ceiling of an Integral returns itself."},
    5958             :     INT___ROUND___METHODDEF
    5959             :     INT___GETNEWARGS___METHODDEF
    5960             :     INT___FORMAT___METHODDEF
    5961             :     INT___SIZEOF___METHODDEF
    5962             :     {NULL,              NULL}           /* sentinel */
    5963             : };
    5964             : 
    5965             : static PyGetSetDef long_getset[] = {
    5966             :     {"real",
    5967             :      (getter)long_long_meth, (setter)NULL,
    5968             :      "the real part of a complex number",
    5969             :      NULL},
    5970             :     {"imag",
    5971             :      long_get0, (setter)NULL,
    5972             :      "the imaginary part of a complex number",
    5973             :      NULL},
    5974             :     {"numerator",
    5975             :      (getter)long_long_meth, (setter)NULL,
    5976             :      "the numerator of a rational number in lowest terms",
    5977             :      NULL},
    5978             :     {"denominator",
    5979             :      long_get1, (setter)NULL,
    5980             :      "the denominator of a rational number in lowest terms",
    5981             :      NULL},
    5982             :     {NULL}  /* Sentinel */
    5983             : };
    5984             : 
    5985             : PyDoc_STRVAR(long_doc,
    5986             : "int([x]) -> integer\n\
    5987             : int(x, base=10) -> integer\n\
    5988             : \n\
    5989             : Convert a number or string to an integer, or return 0 if no arguments\n\
    5990             : are given.  If x is a number, return x.__int__().  For floating point\n\
    5991             : numbers, this truncates towards zero.\n\
    5992             : \n\
    5993             : If x is not a number or if base is given, then x must be a string,\n\
    5994             : bytes, or bytearray instance representing an integer literal in the\n\
    5995             : given base.  The literal can be preceded by '+' or '-' and be surrounded\n\
    5996             : by whitespace.  The base defaults to 10.  Valid bases are 0 and 2-36.\n\
    5997             : Base 0 means to interpret the base from the string as an integer literal.\n\
    5998             : >>> int('0b100', base=0)\n\
    5999             : 4");
    6000             : 
    6001             : static PyNumberMethods long_as_number = {
    6002             :     (binaryfunc)long_add,       /*nb_add*/
    6003             :     (binaryfunc)long_sub,       /*nb_subtract*/
    6004             :     (binaryfunc)long_mul,       /*nb_multiply*/
    6005             :     long_mod,                   /*nb_remainder*/
    6006             :     long_divmod,                /*nb_divmod*/
    6007             :     long_pow,                   /*nb_power*/
    6008             :     (unaryfunc)long_neg,        /*nb_negative*/
    6009             :     long_long,                  /*tp_positive*/
    6010             :     (unaryfunc)long_abs,        /*tp_absolute*/
    6011             :     (inquiry)long_bool,         /*tp_bool*/
    6012             :     (unaryfunc)long_invert,     /*nb_invert*/
    6013             :     long_lshift,                /*nb_lshift*/
    6014             :     long_rshift,                /*nb_rshift*/
    6015             :     long_and,                   /*nb_and*/
    6016             :     long_xor,                   /*nb_xor*/
    6017             :     long_or,                    /*nb_or*/
    6018             :     long_long,                  /*nb_int*/
    6019             :     0,                          /*nb_reserved*/
    6020             :     long_float,                 /*nb_float*/
    6021             :     0,                          /* nb_inplace_add */
    6022             :     0,                          /* nb_inplace_subtract */
    6023             :     0,                          /* nb_inplace_multiply */
    6024             :     0,                          /* nb_inplace_remainder */
    6025             :     0,                          /* nb_inplace_power */
    6026             :     0,                          /* nb_inplace_lshift */
    6027             :     0,                          /* nb_inplace_rshift */
    6028             :     0,                          /* nb_inplace_and */
    6029             :     0,                          /* nb_inplace_xor */
    6030             :     0,                          /* nb_inplace_or */
    6031             :     long_div,                   /* nb_floor_divide */
    6032             :     long_true_divide,           /* nb_true_divide */
    6033             :     0,                          /* nb_inplace_floor_divide */
    6034             :     0,                          /* nb_inplace_true_divide */
    6035             :     long_long,                  /* nb_index */
    6036             : };
    6037             : 
    6038             : PyTypeObject PyLong_Type = {
    6039             :     PyVarObject_HEAD_INIT(&PyType_Type, 0)
    6040             :     "int",                                      /* tp_name */
    6041             :     offsetof(PyLongObject, ob_digit),           /* tp_basicsize */
    6042             :     sizeof(digit),                              /* tp_itemsize */
    6043             :     0,                                          /* tp_dealloc */
    6044             :     0,                                          /* tp_vectorcall_offset */
    6045             :     0,                                          /* tp_getattr */
    6046             :     0,                                          /* tp_setattr */
    6047             :     0,                                          /* tp_as_async */
    6048             :     long_to_decimal_string,                     /* tp_repr */
    6049             :     &long_as_number,                            /* tp_as_number */
    6050             :     0,                                          /* tp_as_sequence */
    6051             :     0,                                          /* tp_as_mapping */
    6052             :     (hashfunc)long_hash,                        /* tp_hash */
    6053             :     0,                                          /* tp_call */
    6054             :     0,                                          /* tp_str */
    6055             :     PyObject_GenericGetAttr,                    /* tp_getattro */
    6056             :     0,                                          /* tp_setattro */
    6057             :     0,                                          /* tp_as_buffer */
    6058             :     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
    6059             :         Py_TPFLAGS_LONG_SUBCLASS |
    6060             :         _Py_TPFLAGS_MATCH_SELF,               /* tp_flags */
    6061             :     long_doc,                                   /* tp_doc */
    6062             :     0,                                          /* tp_traverse */
    6063             :     0,                                          /* tp_clear */
    6064             :     long_richcompare,                           /* tp_richcompare */
    6065             :     0,                                          /* tp_weaklistoffset */
    6066             :     0,                                          /* tp_iter */
    6067             :     0,                                          /* tp_iternext */
    6068             :     long_methods,                               /* tp_methods */
    6069             :     0,                                          /* tp_members */
    6070             :     long_getset,                                /* tp_getset */
    6071             :     0,                                          /* tp_base */
    6072             :     0,                                          /* tp_dict */
    6073             :     0,                                          /* tp_descr_get */
    6074             :     0,                                          /* tp_descr_set */
    6075             :     0,                                          /* tp_dictoffset */
    6076             :     0,                                          /* tp_init */
    6077             :     0,                                          /* tp_alloc */
    6078             :     long_new,                                   /* tp_new */
    6079             :     PyObject_Free,                              /* tp_free */
    6080             : };
    6081             : 
    6082             : static PyTypeObject Int_InfoType;
    6083             : 
    6084             : PyDoc_STRVAR(int_info__doc__,
    6085             : "sys.int_info\n\
    6086             : \n\
    6087             : A named tuple that holds information about Python's\n\
    6088             : internal representation of integers.  The attributes are read only.");
    6089             : 
    6090             : static PyStructSequence_Field int_info_fields[] = {
    6091             :     {"bits_per_digit", "size of a digit in bits"},
    6092             :     {"sizeof_digit", "size in bytes of the C type used to represent a digit"},
    6093             :     {NULL, NULL}
    6094             : };
    6095             : 
    6096             : static PyStructSequence_Desc int_info_desc = {
    6097             :     "sys.int_info",   /* name */
    6098             :     int_info__doc__,  /* doc */
    6099             :     int_info_fields,  /* fields */
    6100             :     2                 /* number of fields */
    6101             : };
    6102             : 
    6103             : PyObject *
    6104        3134 : PyLong_GetInfo(void)
    6105             : {
    6106             :     PyObject* int_info;
    6107        3134 :     int field = 0;
    6108        3134 :     int_info = PyStructSequence_New(&Int_InfoType);
    6109        3134 :     if (int_info == NULL)
    6110           0 :         return NULL;
    6111        3134 :     PyStructSequence_SET_ITEM(int_info, field++,
    6112             :                               PyLong_FromLong(PyLong_SHIFT));
    6113        3134 :     PyStructSequence_SET_ITEM(int_info, field++,
    6114             :                               PyLong_FromLong(sizeof(digit)));
    6115        3134 :     if (PyErr_Occurred()) {
    6116           0 :         Py_CLEAR(int_info);
    6117           0 :         return NULL;
    6118             :     }
    6119        3134 :     return int_info;
    6120             : }
    6121             : 
    6122             : 
    6123             : /* runtime lifecycle */
    6124             : 
    6125             : PyStatus
    6126        3134 : _PyLong_InitTypes(PyInterpreterState *interp)
    6127             : {
    6128        3134 :     if (!_Py_IsMainInterpreter(interp)) {
    6129         171 :         return _PyStatus_OK();
    6130             :     }
    6131             : 
    6132        2963 :     if (PyType_Ready(&PyLong_Type) < 0) {
    6133           0 :         return _PyStatus_ERR("Can't initialize int type");
    6134             :     }
    6135             : 
    6136             :     /* initialize int_info */
    6137        2963 :     if (Int_InfoType.tp_name == NULL) {
    6138        2963 :         if (PyStructSequence_InitType2(&Int_InfoType, &int_info_desc) < 0) {
    6139           0 :             return _PyStatus_ERR("can't init int info type");
    6140             :         }
    6141             :     }
    6142             : 
    6143        2963 :     return _PyStatus_OK();
    6144             : }
    6145             : 
    6146             : 
    6147             : void
    6148        3120 : _PyLong_FiniTypes(PyInterpreterState *interp)
    6149             : {
    6150        3120 :     if (!_Py_IsMainInterpreter(interp)) {
    6151         169 :         return;
    6152             :     }
    6153             : 
    6154        2951 :     _PyStructSequence_FiniType(&Int_InfoType);
    6155             : }

Generated by: LCOV version 1.14