Line | Count | Source (jump to first uncovered line) |
1 | |
2 | /* Complex object implementation */ |
3 | |
4 | /* Borrows heavily from floatobject.c */ |
5 | |
6 | /* Submitted by Jim Hugunin */ |
7 | |
8 | #include "Python.h" |
9 | #include "pycore_call.h" // _PyObject_CallNoArgs() |
10 | #include "pycore_long.h" // _PyLong_GetZero() |
11 | #include "pycore_object.h" // _PyObject_Init() |
12 | #include "pycore_pymath.h" // _Py_ADJUST_ERANGE2() |
13 | #include "structmember.h" // PyMemberDef |
14 | |
15 | |
16 | /*[clinic input] |
17 | class complex "PyComplexObject *" "&PyComplex_Type" |
18 | [clinic start generated code]*/ |
19 | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=819e057d2d10f5ec]*/ |
20 | |
21 | #include "clinic/complexobject.c.h" |
22 | |
23 | /* elementary operations on complex numbers */ |
24 | |
25 | static Py_complex c_1 = {1., 0.}; |
26 | |
27 | Py_complex |
28 | _Py_c_sum(Py_complex a, Py_complex b) |
29 | { |
30 | Py_complex r; |
31 | r.real = a.real + b.real; |
32 | r.imag = a.imag + b.imag; |
33 | return r; |
34 | } |
35 | |
36 | Py_complex |
37 | _Py_c_diff(Py_complex a, Py_complex b) |
38 | { |
39 | Py_complex r; |
40 | r.real = a.real - b.real; |
41 | r.imag = a.imag - b.imag; |
42 | return r; |
43 | } |
44 | |
45 | Py_complex |
46 | _Py_c_neg(Py_complex a) |
47 | { |
48 | Py_complex r; |
49 | r.real = -a.real; |
50 | r.imag = -a.imag; |
51 | return r; |
52 | } |
53 | |
54 | Py_complex |
55 | _Py_c_prod(Py_complex a, Py_complex b) |
56 | { |
57 | Py_complex r; |
58 | r.real = a.real*b.real - a.imag*b.imag; |
59 | r.imag = a.real*b.imag + a.imag*b.real; |
60 | return r; |
61 | } |
62 | |
63 | /* Avoid bad optimization on Windows ARM64 until the compiler is fixed */ |
64 | #ifdef _M_ARM64 |
65 | #pragma optimize("", off) |
66 | #endif |
67 | Py_complex |
68 | _Py_c_quot(Py_complex a, Py_complex b) |
69 | { |
70 | /****************************************************************** |
71 | This was the original algorithm. It's grossly prone to spurious |
72 | overflow and underflow errors. It also merrily divides by 0 despite |
73 | checking for that(!). The code still serves a doc purpose here, as |
74 | the algorithm following is a simple by-cases transformation of this |
75 | one: |
76 | |
77 | Py_complex r; |
78 | double d = b.real*b.real + b.imag*b.imag; |
79 | if (d == 0.) |
80 | errno = EDOM; |
81 | r.real = (a.real*b.real + a.imag*b.imag)/d; |
82 | r.imag = (a.imag*b.real - a.real*b.imag)/d; |
83 | return r; |
84 | ******************************************************************/ |
85 | |
86 | /* This algorithm is better, and is pretty obvious: first divide the |
87 | * numerators and denominator by whichever of {b.real, b.imag} has |
88 | * larger magnitude. The earliest reference I found was to CACM |
89 | * Algorithm 116 (Complex Division, Robert L. Smith, Stanford |
90 | * University). As usual, though, we're still ignoring all IEEE |
91 | * endcases. |
92 | */ |
93 | Py_complex r; /* the result */ |
94 | const double abs_breal = b.real < 0 ? -b.real26.6k : b.real32.0k ; Branch (94:31): [True: 26.6k, False: 32.0k]
|
95 | const double abs_bimag = b.imag < 0 ? -b.imag26.6k : b.imag32.0k ; Branch (95:31): [True: 26.6k, False: 32.0k]
|
96 | |
97 | if (abs_breal >= abs_bimag) { Branch (97:9): [True: 34.2k, False: 24.4k]
|
98 | /* divide tops and bottom by b.real */ |
99 | if (abs_breal == 0.0) { Branch (99:13): [True: 5, False: 34.1k]
|
100 | errno = EDOM; |
101 | r.real = r.imag = 0.0; |
102 | } |
103 | else { |
104 | const double ratio = b.imag / b.real; |
105 | const double denom = b.real + b.imag * ratio; |
106 | r.real = (a.real + a.imag * ratio) / denom; |
107 | r.imag = (a.imag - a.real * ratio) / denom; |
108 | } |
109 | } |
110 | else if (abs_bimag >= abs_breal) { Branch (110:14): [True: 24.4k, False: 39]
|
111 | /* divide tops and bottom by b.imag */ |
112 | const double ratio = b.real / b.imag; |
113 | const double denom = b.real * ratio + b.imag; |
114 | assert(b.imag != 0.0); |
115 | r.real = (a.real * ratio + a.imag) / denom; |
116 | r.imag = (a.imag * ratio - a.real) / denom; |
117 | } |
118 | else { |
119 | /* At least one of b.real or b.imag is a NaN */ |
120 | r.real = r.imag = Py_NAN; |
121 | } |
122 | return r; |
123 | } |
124 | #ifdef _M_ARM64 |
125 | #pragma optimize("", on) |
126 | #endif |
127 | |
128 | Py_complex |
129 | _Py_c_pow(Py_complex a, Py_complex b) |
130 | { |
131 | Py_complex r; |
132 | double vabs,len,at,phase; |
133 | if (b.real == 0. && b.imag == 0.5 ) { Branch (133:9): [True: 5, False: 101]
Branch (133:25): [True: 0, False: 5]
|
134 | r.real = 1.; |
135 | r.imag = 0.; |
136 | } |
137 | else if (a.real == 0. && a.imag == 0.8 ) { Branch (137:14): [True: 8, False: 98]
Branch (137:30): [True: 3, False: 5]
|
138 | if (b.imag != 0. || b.real < 0.0 ) Branch (138:13): [True: 3, False: 0]
Branch (138:29): [True: 0, False: 0]
|
139 | errno = EDOM; |
140 | r.real = 0.; |
141 | r.imag = 0.; |
142 | } |
143 | else { |
144 | vabs = hypot(a.real,a.imag); |
145 | len = pow(vabs,b.real); |
146 | at = atan2(a.imag, a.real); |
147 | phase = at*b.real; |
148 | if (b.imag != 0.0) { Branch (148:13): [True: 41, False: 62]
|
149 | len /= exp(at*b.imag); |
150 | phase += b.imag*log(vabs); |
151 | } |
152 | r.real = len*cos(phase); |
153 | r.imag = len*sin(phase); |
154 | } |
155 | return r; |
156 | } |
157 | |
158 | static Py_complex |
159 | c_powu(Py_complex x, long n) |
160 | { |
161 | Py_complex r, p; |
162 | long mask = 1; |
163 | r = c_1; |
164 | p = x; |
165 | while (mask > 0 && n >= mask) { Branch (165:12): [True: 466, False: 0]
Branch (165:24): [True: 326, False: 140]
|
166 | if (n & mask) Branch (166:13): [True: 227, False: 99]
|
167 | r = _Py_c_prod(r,p); |
168 | mask <<= 1; |
169 | p = _Py_c_prod(p,p); |
170 | } |
171 | return r; |
172 | } |
173 | |
174 | static Py_complex |
175 | c_powi(Py_complex x, long n) |
176 | { |
177 | if (n > 0) Branch (177:9): [True: 62, False: 78]
|
178 | return c_powu(x,n); |
179 | else |
180 | return _Py_c_quot(c_1, c_powu(x,-n)); |
181 | |
182 | } |
183 | |
184 | double |
185 | _Py_c_abs(Py_complex z) |
186 | { |
187 | /* sets errno = ERANGE on overflow; otherwise errno = 0 */ |
188 | double result; |
189 | |
190 | if (!Py_IS_FINITE(z.real) || !544 Py_IS_FINITE544 (z.imag)) { Branch (190:9): [True: 73, False: 544]
Branch (190:34): [True: 30, False: 514]
|
191 | /* C99 rules: if either the real or the imaginary part is an |
192 | infinity, return infinity, even if the other part is a |
193 | NaN. */ |
194 | if (Py_IS_INFINITY(z.real)) { |
195 | result = fabs(z.real); |
196 | errno = 0; |
197 | return result; |
198 | } |
199 | if (Py_IS_INFINITY(z.imag)) { |
200 | result = fabs(z.imag); |
201 | errno = 0; |
202 | return result; |
203 | } |
204 | /* either the real or imaginary part is a NaN, |
205 | and neither is infinite. Result should be NaN. */ |
206 | return Py_NAN; |
207 | } |
208 | result = hypot(z.real, z.imag); |
209 | if (!Py_IS_FINITE(result)) Branch (209:9): [True: 2, False: 512]
|
210 | errno = ERANGE; |
211 | else |
212 | errno = 0; |
213 | return result; |
214 | } |
215 | |
216 | static PyObject * |
217 | complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval) |
218 | { |
219 | PyObject *op; |
220 | |
221 | op = type->tp_alloc(type, 0); |
222 | if (op != NULL) Branch (222:9): [True: 9.42k, False: 0]
|
223 | ((PyComplexObject *)op)->cval = cval; |
224 | return op; |
225 | } |
226 | |
227 | PyObject * |
228 | PyComplex_FromCComplex(Py_complex cval) |
229 | { |
230 | /* Inline PyObject_New */ |
231 | PyComplexObject *op = PyObject_Malloc(sizeof(PyComplexObject)); |
232 | if (op == NULL) { Branch (232:9): [True: 0, False: 78.5k]
|
233 | return PyErr_NoMemory(); |
234 | } |
235 | _PyObject_Init((PyObject*)op, &PyComplex_Type); |
236 | op->cval = cval; |
237 | return (PyObject *) op; |
238 | } |
239 | |
240 | static PyObject * |
241 | complex_subtype_from_doubles(PyTypeObject *type, double real, double imag) |
242 | { |
243 | Py_complex c; |
244 | c.real = real; |
245 | c.imag = imag; |
246 | return complex_subtype_from_c_complex(type, c); |
247 | } |
248 | |
249 | PyObject * |
250 | PyComplex_FromDoubles(double real, double imag) |
251 | { |
252 | Py_complex c; |
253 | c.real = real; |
254 | c.imag = imag; |
255 | return PyComplex_FromCComplex(c); |
256 | } |
257 | |
258 | double |
259 | PyComplex_RealAsDouble(PyObject *op) |
260 | { |
261 | if (PyComplex_Check(op)) { |
262 | return ((PyComplexObject *)op)->cval.real; |
263 | } |
264 | else { |
265 | return PyFloat_AsDouble(op); |
266 | } |
267 | } |
268 | |
269 | double |
270 | PyComplex_ImagAsDouble(PyObject *op) |
271 | { |
272 | if (PyComplex_Check(op)) { |
273 | return ((PyComplexObject *)op)->cval.imag; |
274 | } |
275 | else { |
276 | return 0.0; |
277 | } |
278 | } |
279 | |
280 | static PyObject * |
281 | try_complex_special_method(PyObject *op) |
282 | { |
283 | PyObject *f; |
284 | |
285 | f = _PyObject_LookupSpecial(op, &_Py_ID(__complex__)); |
286 | if (f) { Branch (286:9): [True: 752, False: 9.47k]
|
287 | PyObject *res = _PyObject_CallNoArgs(f); |
288 | Py_DECREF(f); |
289 | if (!res || PyComplex_CheckExact715 (res)) { Branch (289:13): [True: 37, False: 715]
|
290 | return res; |
291 | } |
292 | if (!PyComplex_Check(res)) { Branch (292:13): [True: 259, False: 2]
|
293 | PyErr_Format(PyExc_TypeError, |
294 | "__complex__ returned non-complex (type %.200s)", |
295 | Py_TYPE(res)->tp_name); |
296 | Py_DECREF(res); |
297 | return NULL; |
298 | } |
299 | /* Issue #29894: warn if 'res' not of exact type complex. */ |
300 | if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, Branch (300:13): [True: 0, False: 2]
|
301 | "__complex__ returned non-complex (type %.200s). " |
302 | "The ability to return an instance of a strict subclass of complex " |
303 | "is deprecated, and may be removed in a future version of Python.", |
304 | Py_TYPE(res)->tp_name)) { |
305 | Py_DECREF(res); |
306 | return NULL; |
307 | } |
308 | return res; |
309 | } |
310 | return NULL; |
311 | } |
312 | |
313 | Py_complex |
314 | PyComplex_AsCComplex(PyObject *op) |
315 | { |
316 | Py_complex cv; |
317 | PyObject *newop = NULL; |
318 | |
319 | assert(op); |
320 | /* If op is already of type PyComplex_Type, return its value */ |
321 | if (PyComplex_Check(op)) { |
322 | return ((PyComplexObject *)op)->cval; |
323 | } |
324 | /* If not, use op's __complex__ method, if it exists */ |
325 | |
326 | /* return -1 on failure */ |
327 | cv.real = -1.; |
328 | cv.imag = 0.; |
329 | |
330 | newop = try_complex_special_method(op); |
331 | |
332 | if (newop) { Branch (332:9): [True: 102, False: 1.10k]
|
333 | cv = ((PyComplexObject *)newop)->cval; |
334 | Py_DECREF(newop); |
335 | return cv; |
336 | } |
337 | else if (PyErr_Occurred()) { Branch (337:14): [True: 289, False: 814]
|
338 | return cv; |
339 | } |
340 | /* If neither of the above works, interpret op as a float giving the |
341 | real part of the result, and fill in the imaginary part as 0. */ |
342 | else { |
343 | /* PyFloat_AsDouble will return -1 on failure */ |
344 | cv.real = PyFloat_AsDouble(op); |
345 | return cv; |
346 | } |
347 | } |
348 | |
349 | static PyObject * |
350 | complex_repr(PyComplexObject *v) |
351 | { |
352 | int precision = 0; |
353 | char format_code = 'r'; |
354 | PyObject *result = NULL; |
355 | |
356 | /* If these are non-NULL, they'll need to be freed. */ |
357 | char *pre = NULL; |
358 | char *im = NULL; |
359 | |
360 | /* These do not need to be freed. re is either an alias |
361 | for pre or a pointer to a constant. lead and tail |
362 | are pointers to constants. */ |
363 | const char *re = NULL; |
364 | const char *lead = ""; |
365 | const char *tail = ""; |
366 | |
367 | if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0374 ) { Branch (367:9): [True: 374, False: 948]
Branch (367:31): [True: 281, False: 93]
|
368 | /* Real part is +0: just output the imaginary part and do not |
369 | include parens. */ |
370 | re = ""; |
371 | im = PyOS_double_to_string(v->cval.imag, format_code, |
372 | precision, 0, NULL); |
373 | if (!im) { Branch (373:13): [True: 0, False: 281]
|
374 | PyErr_NoMemory(); |
375 | goto done; |
376 | } |
377 | } else { |
378 | /* Format imaginary part with sign, real part without. Include |
379 | parens in the result. */ |
380 | pre = PyOS_double_to_string(v->cval.real, format_code, |
381 | precision, 0, NULL); |
382 | if (!pre) { Branch (382:13): [True: 0, False: 1.04k]
|
383 | PyErr_NoMemory(); |
384 | goto done; |
385 | } |
386 | re = pre; |
387 | |
388 | im = PyOS_double_to_string(v->cval.imag, format_code, |
389 | precision, Py_DTSF_SIGN, NULL); |
390 | if (!im) { Branch (390:13): [True: 0, False: 1.04k]
|
391 | PyErr_NoMemory(); |
392 | goto done; |
393 | } |
394 | lead = "("; |
395 | tail = ")"; |
396 | } |
397 | result = PyUnicode_FromFormat("%s%s%sj%s", lead, re, im, tail); |
398 | done: |
399 | PyMem_Free(im); |
400 | PyMem_Free(pre); |
401 | |
402 | return result; |
403 | } |
404 | |
405 | static Py_hash_t |
406 | complex_hash(PyComplexObject *v) |
407 | { |
408 | Py_uhash_t hashreal, hashimag, combined; |
409 | hashreal = (Py_uhash_t)_Py_HashDouble((PyObject *) v, v->cval.real); |
410 | if (hashreal == (Py_uhash_t)-1) Branch (410:9): [True: 0, False: 2.73k]
|
411 | return -1; |
412 | hashimag = (Py_uhash_t)_Py_HashDouble((PyObject *)v, v->cval.imag); |
413 | if (hashimag == (Py_uhash_t)-1) Branch (413:9): [True: 0, False: 2.73k]
|
414 | return -1; |
415 | /* Note: if the imaginary part is 0, hashimag is 0 now, |
416 | * so the following returns hashreal unchanged. This is |
417 | * important because numbers of different types that |
418 | * compare equal must have the same hash value, so that |
419 | * hash(x + 0*j) must equal hash(x). |
420 | */ |
421 | combined = hashreal + _PyHASH_IMAG * hashimag; |
422 | if (combined == (Py_uhash_t)-1) Branch (422:9): [True: 0, False: 2.73k]
|
423 | combined = (Py_uhash_t)-2; |
424 | return (Py_hash_t)combined; |
425 | } |
426 | |
427 | /* This macro may return! */ |
428 | #define TO_COMPLEX(obj, c) \ |
429 | if (PyComplex_Check(obj)) \ |
430 | c = ((PyComplexObject *)(obj))->cval183k ; \ |
431 | else if (850 to_complex(&(obj), &(c)) < 0850 ) \ |
432 | return (obj)5 |
433 | |
434 | static int |
435 | to_complex(PyObject **pobj, Py_complex *pc) |
436 | { |
437 | PyObject *obj = *pobj; |
438 | |
439 | pc->real = pc->imag = 0.0; |
440 | if (PyLong_Check(obj)) { |
441 | pc->real = PyLong_AsDouble(obj); |
442 | if (pc->real == -1.0 && PyErr_Occurred()9 ) { Branch (442:13): [True: 9, False: 276]
Branch (442:33): [True: 0, False: 9]
|
443 | *pobj = NULL; |
444 | return -1; |
445 | } |
446 | return 0; |
447 | } |
448 | if (PyFloat_Check(obj)) { |
449 | pc->real = PyFloat_AsDouble(obj); |
450 | return 0; |
451 | } |
452 | Py_INCREF(Py_NotImplemented); |
453 | *pobj = Py_NotImplemented; |
454 | return -1; |
455 | } |
456 | |
457 | |
458 | static PyObject * |
459 | complex_add(PyObject *v, PyObject *w) |
460 | { |
461 | Py_complex result; |
462 | Py_complex a, b; |
463 | TO_COMPLEX(v, a); |
464 | TO_COMPLEX(w, b); |
465 | result = _Py_c_sum(a, b); |
466 | return PyComplex_FromCComplex(result); |
467 | } |
468 | |
469 | static PyObject * |
470 | complex_sub(PyObject *v, PyObject *w) |
471 | { |
472 | Py_complex result; |
473 | Py_complex a, b; |
474 | TO_COMPLEX(v, a); |
475 | TO_COMPLEX(w, b); |
476 | result = _Py_c_diff(a, b); |
477 | return PyComplex_FromCComplex(result); |
478 | } |
479 | |
480 | static PyObject * |
481 | complex_mul(PyObject *v, PyObject *w) |
482 | { |
483 | Py_complex result; |
484 | Py_complex a, b; |
485 | TO_COMPLEX(v, a); |
486 | TO_COMPLEX(w, b); |
487 | result = _Py_c_prod(a, b); |
488 | return PyComplex_FromCComplex(result); |
489 | } |
490 | |
491 | static PyObject * |
492 | complex_div(PyObject *v, PyObject *w) |
493 | { |
494 | Py_complex quot; |
495 | Py_complex a, b; |
496 | TO_COMPLEX(v, a); |
497 | TO_COMPLEX(w, b); |
498 | errno = 0; |
499 | quot = _Py_c_quot(a, b); |
500 | if (errno == EDOM) { Branch (500:9): [True: 5, False: 58.5k]
|
501 | PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero"); |
502 | return NULL; |
503 | } |
504 | return PyComplex_FromCComplex(quot); |
505 | } |
506 | |
507 | static PyObject * |
508 | complex_pow(PyObject *v, PyObject *w, PyObject *z) |
509 | { |
510 | Py_complex p; |
511 | Py_complex a, b; |
512 | TO_COMPLEX(v, a); |
513 | TO_COMPLEX(w, b); |
514 | |
515 | if (z != Py_None) { Branch (515:9): [True: 2, False: 246]
|
516 | PyErr_SetString(PyExc_ValueError, "complex modulo"); |
517 | return NULL; |
518 | } |
519 | errno = 0; |
520 | // Check whether the exponent has a small integer value, and if so use |
521 | // a faster and more accurate algorithm. |
522 | if (b.imag == 0.0 && b.real == floor(b.real)202 && fabs(b.real) <= 100.0181 ) { Branch (522:9): [True: 202, False: 44]
Branch (522:26): [True: 181, False: 21]
Branch (522:53): [True: 140, False: 41]
|
523 | p = c_powi(a, (long)b.real); |
524 | } |
525 | else { |
526 | p = _Py_c_pow(a, b); |
527 | } |
528 | |
529 | _Py_ADJUST_ERANGE2(p.real, p.imag); |
530 | if (errno == EDOM) { Branch (530:9): [True: 3, False: 243]
|
531 | PyErr_SetString(PyExc_ZeroDivisionError, |
532 | "0.0 to a negative or complex power"); |
533 | return NULL; |
534 | } |
535 | else if (errno == ERANGE) { Branch (535:14): [True: 25, False: 218]
|
536 | PyErr_SetString(PyExc_OverflowError, |
537 | "complex exponentiation"); |
538 | return NULL; |
539 | } |
540 | return PyComplex_FromCComplex(p); |
541 | } |
542 | |
543 | static PyObject * |
544 | complex_neg(PyComplexObject *v) |
545 | { |
546 | Py_complex neg; |
547 | neg.real = -v->cval.real; |
548 | neg.imag = -v->cval.imag; |
549 | return PyComplex_FromCComplex(neg); |
550 | } |
551 | |
552 | static PyObject * |
553 | complex_pos(PyComplexObject *v) |
554 | { |
555 | if (PyComplex_CheckExact(v)) { |
556 | Py_INCREF(v); |
557 | return (PyObject *)v; |
558 | } |
559 | else |
560 | return PyComplex_FromCComplex(v->cval); |
561 | } |
562 | |
563 | static PyObject * |
564 | complex_abs(PyComplexObject *v) |
565 | { |
566 | double result; |
567 | |
568 | result = _Py_c_abs(v->cval); |
569 | |
570 | if (errno == ERANGE) { Branch (570:9): [True: 1, False: 373]
|
571 | PyErr_SetString(PyExc_OverflowError, |
572 | "absolute value too large"); |
573 | return NULL; |
574 | } |
575 | return PyFloat_FromDouble(result); |
576 | } |
577 | |
578 | static int |
579 | complex_bool(PyComplexObject *v) |
580 | { |
581 | return v->cval.real != 0.0 || v->cval.imag != 0.06 ; Branch (581:12): [True: 104, False: 6]
Branch (581:35): [True: 4, False: 2]
|
582 | } |
583 | |
584 | static PyObject * |
585 | complex_richcompare(PyObject *v, PyObject *w, int op) |
586 | { |
587 | PyObject *res; |
588 | Py_complex i; |
589 | int equal; |
590 | |
591 | if (op != Py_EQ && op != 31.8k Py_NE31.8k ) { Branch (591:9): [True: 31.8k, False: 3.06k]
Branch (591:24): [True: 171, False: 31.6k]
|
592 | goto Unimplemented; |
593 | } |
594 | |
595 | assert(PyComplex_Check(v)); |
596 | TO_COMPLEX(v, i); |
597 | |
598 | if (PyLong_Check(w)) { |
599 | /* Check for 0.0 imaginary part first to avoid the rich |
600 | * comparison when possible. |
601 | */ |
602 | if (i.imag == 0.0) { Branch (602:13): [True: 4.71k, False: 28.6k]
|
603 | PyObject *j, *sub_res; |
604 | j = PyFloat_FromDouble(i.real); |
605 | if (j == NULL) Branch (605:17): [True: 0, False: 4.71k]
|
606 | return NULL; |
607 | |
608 | sub_res = PyObject_RichCompare(j, w, op); |
609 | Py_DECREF(j); |
610 | return sub_res; |
611 | } |
612 | else { |
613 | equal = 0; |
614 | } |
615 | } |
616 | else if (PyFloat_Check(w)) { |
617 | equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0424 ); Branch (617:18): [True: 424, False: 4]
Branch (617:51): [True: 226, False: 198]
|
618 | } |
619 | else if (PyComplex_Check(w)) { |
620 | Py_complex j; |
621 | |
622 | TO_COMPLEX(w, j); |
623 | equal = (i.real == j.real && i.imag == j.imag849 ); Branch (623:18): [True: 849, False: 11]
Branch (623:38): [True: 838, False: 11]
|
624 | } |
625 | else { |
626 | goto Unimplemented; |
627 | } |
628 | |
629 | if (equal == (op == Py_EQ)) Branch (629:9): [True: 28.7k, False: 1.21k]
|
630 | res = Py_True; |
631 | else |
632 | res = Py_False; |
633 | |
634 | Py_INCREF(res); |
635 | return res; |
636 | |
637 | Unimplemented: |
638 | Py_RETURN_NOTIMPLEMENTED; |
639 | } |
640 | |
641 | /*[clinic input] |
642 | complex.conjugate |
643 | |
644 | Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j. |
645 | [clinic start generated code]*/ |
646 | |
647 | static PyObject * |
648 | complex_conjugate_impl(PyComplexObject *self) |
649 | /*[clinic end generated code: output=5059ef162edfc68e input=5fea33e9747ec2c4]*/ |
650 | { |
651 | Py_complex c = self->cval; |
652 | c.imag = -c.imag; |
653 | return PyComplex_FromCComplex(c); |
654 | } |
655 | |
656 | /*[clinic input] |
657 | complex.__getnewargs__ |
658 | |
659 | [clinic start generated code]*/ |
660 | |
661 | static PyObject * |
662 | complex___getnewargs___impl(PyComplexObject *self) |
663 | /*[clinic end generated code: output=689b8206e8728934 input=539543e0a50533d7]*/ |
664 | { |
665 | Py_complex c = self->cval; |
666 | return Py_BuildValue("(dd)", c.real, c.imag); |
667 | } |
668 | |
669 | |
670 | /*[clinic input] |
671 | complex.__format__ |
672 | |
673 | format_spec: unicode |
674 | / |
675 | |
676 | Convert to a string according to format_spec. |
677 | [clinic start generated code]*/ |
678 | |
679 | static PyObject * |
680 | complex___format___impl(PyComplexObject *self, PyObject *format_spec) |
681 | /*[clinic end generated code: output=bfcb60df24cafea0 input=014ef5488acbe1d5]*/ |
682 | { |
683 | _PyUnicodeWriter writer; |
684 | int ret; |
685 | _PyUnicodeWriter_Init(&writer); |
686 | ret = _PyComplex_FormatAdvancedWriter( |
687 | &writer, |
688 | (PyObject *)self, |
689 | format_spec, 0, PyUnicode_GET_LENGTH(format_spec)); |
690 | if (ret == -1) { Branch (690:9): [True: 12, False: 100]
|
691 | _PyUnicodeWriter_Dealloc(&writer); |
692 | return NULL; |
693 | } |
694 | return _PyUnicodeWriter_Finish(&writer); |
695 | } |
696 | |
697 | /*[clinic input] |
698 | complex.__complex__ |
699 | |
700 | Convert this value to exact type complex. |
701 | [clinic start generated code]*/ |
702 | |
703 | static PyObject * |
704 | complex___complex___impl(PyComplexObject *self) |
705 | /*[clinic end generated code: output=e6b35ba3d275dc9c input=3589ada9d27db854]*/ |
706 | { |
707 | if (PyComplex_CheckExact(self)) { |
708 | Py_INCREF(self); |
709 | return (PyObject *)self; |
710 | } |
711 | else { |
712 | return PyComplex_FromCComplex(self->cval); |
713 | } |
714 | } |
715 | |
716 | |
717 | static PyMethodDef complex_methods[] = { |
718 | COMPLEX_CONJUGATE_METHODDEF |
719 | COMPLEX___COMPLEX___METHODDEF |
720 | COMPLEX___GETNEWARGS___METHODDEF |
721 | COMPLEX___FORMAT___METHODDEF |
722 | {NULL, NULL} /* sentinel */ |
723 | }; |
724 | |
725 | static PyMemberDef complex_members[] = { |
726 | {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY, |
727 | "the real part of a complex number"}, |
728 | {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY, |
729 | "the imaginary part of a complex number"}, |
730 | {0}, |
731 | }; |
732 | |
733 | static PyObject * |
734 | complex_from_string_inner(const char *s, Py_ssize_t len, void *type) |
735 | { |
736 | double x=0.0, y=0.0, z; |
737 | int got_bracket=0; |
738 | const char *start; |
739 | char *end; |
740 | |
741 | /* position on first nonblank */ |
742 | start = s; |
743 | while (Py_ISSPACE(*s)) |
744 | s++; |
745 | if (*s == '(') { Branch (745:9): [True: 307, False: 201]
|
746 | /* Skip over possible bracket from repr(). */ |
747 | got_bracket = 1; |
748 | s++; |
749 | while (Py_ISSPACE(*s)) |
750 | s++; |
751 | } |
752 | |
753 | /* a valid complex string usually takes one of the three forms: |
754 | |
755 | <float> - real part only |
756 | <float>j - imaginary part only |
757 | <float><signed-float>j - real and imaginary parts |
758 | |
759 | where <float> represents any numeric string that's accepted by the |
760 | float constructor (including 'nan', 'inf', 'infinity', etc.), and |
761 | <signed-float> is any string of the form <float> whose first |
762 | character is '+' or '-'. |
763 | |
764 | For backwards compatibility, the extra forms |
765 | |
766 | <float><sign>j |
767 | <sign>j |
768 | j |
769 | |
770 | are also accepted, though support for these forms may be removed from |
771 | a future version of Python. |
772 | */ |
773 | |
774 | /* first look for forms starting with <float> */ |
775 | z = PyOS_string_to_double(s, &end, NULL); |
776 | if (z == -1.0 && PyErr_Occurred()62 ) { Branch (776:9): [True: 62, False: 446]
Branch (776:22): [True: 60, False: 2]
|
777 | if (PyErr_ExceptionMatches(PyExc_ValueError)) Branch (777:13): [True: 60, False: 0]
|
778 | PyErr_Clear(); |
779 | else |
780 | return NULL; |
781 | } |
782 | if (end != s) { Branch (782:9): [True: 448, False: 60]
|
783 | /* all 4 forms starting with <float> land here */ |
784 | s = end; |
785 | if (*s == '+' || *s == '-'267 ) { Branch (785:13): [True: 181, False: 267]
Branch (785:26): [True: 132, False: 135]
|
786 | /* <float><signed-float>j | <float><sign>j */ |
787 | x = z; |
788 | y = PyOS_string_to_double(s, &end, NULL); |
789 | if (y == -1.0 && PyErr_Occurred()4 ) { Branch (789:17): [True: 4, False: 309]
Branch (789:30): [True: 4, False: 0]
|
790 | if (PyErr_ExceptionMatches(PyExc_ValueError)) Branch (790:21): [True: 4, False: 0]
|
791 | PyErr_Clear(); |
792 | else |
793 | return NULL; |
794 | } |
795 | if (end != s) Branch (795:17): [True: 309, False: 4]
|
796 | /* <float><signed-float>j */ |
797 | s = end; |
798 | else { |
799 | /* <float><sign>j */ |
800 | y = *s == '+' ? 1.03 : -1.01 ; Branch (800:21): [True: 3, False: 1]
|
801 | s++; |
802 | } |
803 | if (!(*s == 'j' || *s == 'J'5 )) Branch (803:19): [True: 308, False: 5]
Branch (803:32): [True: 3, False: 2]
|
804 | goto parse_error; |
805 | s++; |
806 | } |
807 | else if (*s == 'j' || *s == 'J'71 ) { Branch (807:18): [True: 64, False: 71]
Branch (807:31): [True: 0, False: 71]
|
808 | /* <float>j */ |
809 | s++; |
810 | y = z; |
811 | } |
812 | else |
813 | /* <float> */ |
814 | x = z; |
815 | } |
816 | else { |
817 | /* not starting with <float>; must be <sign>j or j */ |
818 | if (*s == '+' || *s == '-'59 ) { Branch (818:13): [True: 1, False: 59]
Branch (818:26): [True: 2, False: 57]
|
819 | /* <sign>j */ |
820 | y = *s == '+' ? 1.01 : -1.02 ; Branch (820:17): [True: 1, False: 2]
|
821 | s++; |
822 | } |
823 | else |
824 | /* j */ |
825 | y = 1.0; |
826 | if (!(*s == 'j' || *s == 'J'58 )) Branch (826:15): [True: 2, False: 58]
Branch (826:28): [True: 2, False: 56]
|
827 | goto parse_error; |
828 | s++; |
829 | } |
830 | |
831 | /* trailing whitespace and closing bracket */ |
832 | while (450 Py_ISSPACE(*s)) |
833 | s++; |
834 | if (got_bracket) { Branch (834:9): [True: 307, False: 143]
|
835 | /* if there was an opening parenthesis, then the corresponding |
836 | closing parenthesis should be right here */ |
837 | if (*s != ')') Branch (837:13): [True: 1, False: 306]
|
838 | goto parse_error; |
839 | s++; |
840 | while (Py_ISSPACE(*s)) |
841 | s++; |
842 | } |
843 | |
844 | /* we should now be at the end of the string */ |
845 | if (s-start != len) Branch (845:9): [True: 27, False: 422]
|
846 | goto parse_error; |
847 | |
848 | return complex_subtype_from_doubles(_PyType_CAST(type), x, y); |
849 | |
850 | parse_error: |
851 | PyErr_SetString(PyExc_ValueError, |
852 | "complex() arg is a malformed string"); |
853 | return NULL; |
854 | } |
855 | |
856 | static PyObject * |
857 | complex_subtype_from_string(PyTypeObject *type, PyObject *v) |
858 | { |
859 | const char *s; |
860 | PyObject *s_buffer = NULL, *result = NULL; |
861 | Py_ssize_t len; |
862 | |
863 | if (PyUnicode_Check(v)) { |
864 | s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v); |
865 | if (s_buffer == NULL) { Branch (865:13): [True: 0, False: 535]
|
866 | return NULL; |
867 | } |
868 | assert(PyUnicode_IS_ASCII(s_buffer)); |
869 | /* Simply get a pointer to existing ASCII characters. */ |
870 | s = PyUnicode_AsUTF8AndSize(s_buffer, &len); |
871 | assert(s != NULL); |
872 | } |
873 | else { |
874 | PyErr_Format(PyExc_TypeError, |
875 | "complex() argument must be a string or a number, not '%.200s'", |
876 | Py_TYPE(v)->tp_name); |
877 | return NULL; |
878 | } |
879 | |
880 | result = _Py_string_to_number_with_underscores(s, len, "complex", v, type, |
881 | complex_from_string_inner); |
882 | Py_DECREF(s_buffer); |
883 | return result; |
884 | } |
885 | |
886 | /*[clinic input] |
887 | @classmethod |
888 | complex.__new__ as complex_new |
889 | real as r: object(c_default="NULL") = 0 |
890 | imag as i: object(c_default="NULL") = 0 |
891 | |
892 | Create a complex number from a real part and an optional imaginary part. |
893 | |
894 | This is equivalent to (real + imag*1j) where imag defaults to 0. |
895 | [clinic start generated code]*/ |
896 | |
897 | static PyObject * |
898 | complex_new_impl(PyTypeObject *type, PyObject *r, PyObject *i) |
899 | /*[clinic end generated code: output=b6c7dd577b537dc1 input=f4c667f2596d4fd1]*/ |
900 | { |
901 | PyObject *tmp; |
902 | PyNumberMethods *nbr, *nbi = NULL; |
903 | Py_complex cr, ci; |
904 | int own_r = 0; |
905 | int cr_is_complex = 0; |
906 | int ci_is_complex = 0; |
907 | |
908 | if (r == NULL) { Branch (908:9): [True: 5, False: 9.56k]
|
909 | r = _PyLong_GetZero(); |
910 | } |
911 | |
912 | /* Special-case for a single argument when type(arg) is complex. */ |
913 | if (PyComplex_CheckExact(r) && i == NULL143 && Branch (913:36): [True: 138, False: 5]
|
914 | type == &PyComplex_Type138 ) { Branch (914:9): [True: 8, False: 130]
|
915 | /* Note that we can't know whether it's safe to return |
916 | a complex *subclass* instance as-is, hence the restriction |
917 | to exact complexes here. If either the input or the |
918 | output is a complex subclass, it will be handled below |
919 | as a non-orthogonal vector. */ |
920 | Py_INCREF(r); |
921 | return r; |
922 | } |
923 | if (PyUnicode_Check(r)) { |
924 | if (i != NULL) { Branch (924:13): [True: 3, False: 535]
|
925 | PyErr_SetString(PyExc_TypeError, |
926 | "complex() can't take second arg" |
927 | " if first is a string"); |
928 | return NULL; |
929 | } |
930 | return complex_subtype_from_string(type, r); |
931 | } |
932 | if (i != NULL && PyUnicode_Check8.54k (i)) { Branch (932:9): [True: 8.54k, False: 480]
|
933 | PyErr_SetString(PyExc_TypeError, |
934 | "complex() second arg can't be a string"); |
935 | return NULL; |
936 | } |
937 | |
938 | tmp = try_complex_special_method(r); |
939 | if (tmp) { Branch (939:9): [True: 354, False: 8.66k]
|
940 | r = tmp; |
941 | own_r = 1; |
942 | } |
943 | else if (PyErr_Occurred()) { Branch (943:14): [True: 8, False: 8.66k]
|
944 | return NULL; |
945 | } |
946 | |
947 | nbr = Py_TYPE(r)->tp_as_number; |
948 | if (nbr == NULL || Branch (948:9): [True: 0, False: 9.01k]
|
949 | (nbr->nb_float == NULL && nbr->nb_index == NULL361 && !359 PyComplex_Check359 (r))) Branch (949:10): [True: 361, False: 8.65k]
Branch (949:35): [True: 359, False: 2]
Branch (949:60): [True: 5, False: 354]
|
950 | { |
951 | PyErr_Format(PyExc_TypeError, |
952 | "complex() first argument must be a string or a number, " |
953 | "not '%.200s'", |
954 | Py_TYPE(r)->tp_name); |
955 | if (own_r) { Branch (955:13): [True: 0, False: 5]
|
956 | Py_DECREF(r); |
957 | } |
958 | return NULL; |
959 | } |
960 | if (i != NULL) { Branch (960:9): [True: 8.54k, False: 468]
|
961 | nbi = Py_TYPE(i)->tp_as_number; |
962 | if (nbi == NULL || Branch (962:13): [True: 0, False: 8.54k]
|
963 | (nbi->nb_float == NULL && nbi->nb_index == NULL8 && !6 PyComplex_Check6 (i))) Branch (963:14): [True: 8, False: 8.53k]
Branch (963:39): [True: 6, False: 2]
Branch (963:64): [True: 2, False: 4]
|
964 | { |
965 | PyErr_Format(PyExc_TypeError, |
966 | "complex() second argument must be a number, " |
967 | "not '%.200s'", |
968 | Py_TYPE(i)->tp_name); |
969 | if (own_r) { Branch (969:17): [True: 0, False: 2]
|
970 | Py_DECREF(r); |
971 | } |
972 | return NULL; |
973 | } |
974 | } |
975 | |
976 | /* If we get this far, then the "real" and "imag" parts should |
977 | both be treated as numbers, and the constructor should return a |
978 | complex number equal to (real + imag*1j). |
979 | |
980 | Note that we do NOT assume the input to already be in canonical |
981 | form; the "real" and "imag" parts might themselves be complex |
982 | numbers, which slightly complicates the code below. */ |
983 | if (PyComplex_Check(r)) { |
984 | /* Note that if r is of a complex subtype, we're only |
985 | retaining its real & imag parts here, and the return |
986 | value is (properly) of the builtin complex type. */ |
987 | cr = ((PyComplexObject*)r)->cval; |
988 | cr_is_complex = 1; |
989 | if (own_r) { Branch (989:13): [True: 354, False: 0]
|
990 | Py_DECREF(r); |
991 | } |
992 | } |
993 | else { |
994 | /* The "real" part really is entirely real, and contributes |
995 | nothing in the imaginary direction. |
996 | Just treat it as a double. */ |
997 | tmp = PyNumber_Float(r); |
998 | if (own_r) { Branch (998:13): [True: 0, False: 8.65k]
|
999 | /* r was a newly created complex number, rather |
1000 | than the original "real" argument. */ |
1001 | Py_DECREF(r); |
1002 | } |
1003 | if (tmp == NULL) Branch (1003:13): [True: 6, False: 8.64k]
|
1004 | return NULL; |
1005 | assert(PyFloat_Check(tmp)); |
1006 | cr.real = PyFloat_AsDouble(tmp); |
1007 | cr.imag = 0.0; |
1008 | Py_DECREF(tmp); |
1009 | } |
1010 | if (i == NULL) { Branch (1010:9): [True: 464, False: 8.53k]
|
1011 | ci.real = cr.imag; |
1012 | } |
1013 | else if (PyComplex_Check(i)) { |
1014 | ci = ((PyComplexObject*)i)->cval; |
1015 | ci_is_complex = 1; |
1016 | } else { |
1017 | /* The "imag" part really is entirely imaginary, and |
1018 | contributes nothing in the real direction. |
1019 | Just treat it as a double. */ |
1020 | tmp = PyNumber_Float(i); |
1021 | if (tmp == NULL) Branch (1021:13): [True: 3, False: 8.53k]
|
1022 | return NULL; |
1023 | ci.real = PyFloat_AsDouble(tmp); |
1024 | Py_DECREF(tmp); |
1025 | } |
1026 | /* If the input was in canonical form, then the "real" and "imag" |
1027 | parts are real numbers, so that ci.imag and cr.imag are zero. |
1028 | We need this correction in case they were not real numbers. */ |
1029 | |
1030 | if (ci_is_complex) { Branch (1030:9): [True: 4, False: 8.99k]
|
1031 | cr.real -= ci.imag; |
1032 | } |
1033 | if (cr_is_complex && i != NULL354 ) { Branch (1033:9): [True: 354, False: 8.64k]
Branch (1033:26): [True: 5, False: 349]
|
1034 | ci.real += cr.imag; |
1035 | } |
1036 | return complex_subtype_from_doubles(type, cr.real, ci.real); |
1037 | } |
1038 | |
1039 | static PyNumberMethods complex_as_number = { |
1040 | (binaryfunc)complex_add, /* nb_add */ |
1041 | (binaryfunc)complex_sub, /* nb_subtract */ |
1042 | (binaryfunc)complex_mul, /* nb_multiply */ |
1043 | 0, /* nb_remainder */ |
1044 | 0, /* nb_divmod */ |
1045 | (ternaryfunc)complex_pow, /* nb_power */ |
1046 | (unaryfunc)complex_neg, /* nb_negative */ |
1047 | (unaryfunc)complex_pos, /* nb_positive */ |
1048 | (unaryfunc)complex_abs, /* nb_absolute */ |
1049 | (inquiry)complex_bool, /* nb_bool */ |
1050 | 0, /* nb_invert */ |
1051 | 0, /* nb_lshift */ |
1052 | 0, /* nb_rshift */ |
1053 | 0, /* nb_and */ |
1054 | 0, /* nb_xor */ |
1055 | 0, /* nb_or */ |
1056 | 0, /* nb_int */ |
1057 | 0, /* nb_reserved */ |
1058 | 0, /* nb_float */ |
1059 | 0, /* nb_inplace_add */ |
1060 | 0, /* nb_inplace_subtract */ |
1061 | 0, /* nb_inplace_multiply*/ |
1062 | 0, /* nb_inplace_remainder */ |
1063 | 0, /* nb_inplace_power */ |
1064 | 0, /* nb_inplace_lshift */ |
1065 | 0, /* nb_inplace_rshift */ |
1066 | 0, /* nb_inplace_and */ |
1067 | 0, /* nb_inplace_xor */ |
1068 | 0, /* nb_inplace_or */ |
1069 | 0, /* nb_floor_divide */ |
1070 | (binaryfunc)complex_div, /* nb_true_divide */ |
1071 | 0, /* nb_inplace_floor_divide */ |
1072 | 0, /* nb_inplace_true_divide */ |
1073 | }; |
1074 | |
1075 | PyTypeObject PyComplex_Type = { |
1076 | PyVarObject_HEAD_INIT(&PyType_Type, 0) |
1077 | "complex", |
1078 | sizeof(PyComplexObject), |
1079 | 0, |
1080 | 0, /* tp_dealloc */ |
1081 | 0, /* tp_vectorcall_offset */ |
1082 | 0, /* tp_getattr */ |
1083 | 0, /* tp_setattr */ |
1084 | 0, /* tp_as_async */ |
1085 | (reprfunc)complex_repr, /* tp_repr */ |
1086 | &complex_as_number, /* tp_as_number */ |
1087 | 0, /* tp_as_sequence */ |
1088 | 0, /* tp_as_mapping */ |
1089 | (hashfunc)complex_hash, /* tp_hash */ |
1090 | 0, /* tp_call */ |
1091 | 0, /* tp_str */ |
1092 | PyObject_GenericGetAttr, /* tp_getattro */ |
1093 | 0, /* tp_setattro */ |
1094 | 0, /* tp_as_buffer */ |
1095 | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ |
1096 | complex_new__doc__, /* tp_doc */ |
1097 | 0, /* tp_traverse */ |
1098 | 0, /* tp_clear */ |
1099 | complex_richcompare, /* tp_richcompare */ |
1100 | 0, /* tp_weaklistoffset */ |
1101 | 0, /* tp_iter */ |
1102 | 0, /* tp_iternext */ |
1103 | complex_methods, /* tp_methods */ |
1104 | complex_members, /* tp_members */ |
1105 | 0, /* tp_getset */ |
1106 | 0, /* tp_base */ |
1107 | 0, /* tp_dict */ |
1108 | 0, /* tp_descr_get */ |
1109 | 0, /* tp_descr_set */ |
1110 | 0, /* tp_dictoffset */ |
1111 | 0, /* tp_init */ |
1112 | PyType_GenericAlloc, /* tp_alloc */ |
1113 | complex_new, /* tp_new */ |
1114 | PyObject_Del, /* tp_free */ |
1115 | }; |