Coverage Report

Created: 2022-07-08 09:39

/home/mdboom/Work/builds/cpython/Python/condvar.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Portable condition variable support for windows and pthreads.
3
 * Everything is inline, this header can be included where needed.
4
 *
5
 * APIs generally return 0 on success and non-zero on error,
6
 * and the caller needs to use its platform's error mechanism to
7
 * discover the error (errno, or GetLastError())
8
 *
9
 * Note that some implementations cannot distinguish between a
10
 * condition variable wait time-out and successful wait. Most often
11
 * the difference is moot anyway since the wait condition must be
12
 * re-checked.
13
 * PyCOND_TIMEDWAIT, in addition to returning negative on error,
14
 * thus returns 0 on regular success, 1 on timeout
15
 * or 2 if it can't tell.
16
 *
17
 * There are at least two caveats with using these condition variables,
18
 * due to the fact that they may be emulated with Semaphores on
19
 * Windows:
20
 * 1) While PyCOND_SIGNAL() will wake up at least one thread, we
21
 *    cannot currently guarantee that it will be one of the threads
22
 *    already waiting in a PyCOND_WAIT() call.  It _could_ cause
23
 *    the wakeup of a subsequent thread to try a PyCOND_WAIT(),
24
 *    including the thread doing the PyCOND_SIGNAL() itself.
25
 *    The same applies to PyCOND_BROADCAST(), if N threads are waiting
26
 *    then at least N threads will be woken up, but not necessarily
27
 *    those already waiting.
28
 *    For this reason, don't make the scheduling assumption that a
29
 *    specific other thread will get the wakeup signal
30
 * 2) The _mutex_ must be held when calling PyCOND_SIGNAL() and
31
 *    PyCOND_BROADCAST().
32
 *    While e.g. the posix standard strongly recommends that the mutex
33
 *    associated with the condition variable is held when a
34
 *    pthread_cond_signal() call is made, this is not a hard requirement,
35
 *    although scheduling will not be "reliable" if it isn't.  Here
36
 *    the mutex is used for internal synchronization of the emulated
37
 *    Condition Variable.
38
 */
39
40
#ifndef _CONDVAR_IMPL_H_
41
#define _CONDVAR_IMPL_H_
42
43
#include "Python.h"
44
#include "pycore_condvar.h"
45
46
#ifdef _POSIX_THREADS
47
/*
48
 * POSIX support
49
 */
50
51
/* These private functions are implemented in Python/thread_pthread.h */
52
int _PyThread_cond_init(PyCOND_T *cond);
53
void _PyThread_cond_after(long long us, struct timespec *abs);
54
55
/* The following functions return 0 on success, nonzero on error */
56
#define PyMUTEX_INIT(mut)       pthread_mutex_init((mut), NULL)
57
#define PyMUTEX_FINI(mut)       pthread_mutex_destroy(mut)
58
#define PyMUTEX_LOCK(mut)       pthread_mutex_lock(mut)
59
#define PyMUTEX_UNLOCK(mut)     pthread_mutex_unlock(mut)
60
61
#define PyCOND_INIT(cond)       _PyThread_cond_init(cond)
62
#define PyCOND_FINI(cond)       pthread_cond_destroy(cond)
63
#define PyCOND_SIGNAL(cond)     pthread_cond_signal(cond)
64
#define PyCOND_BROADCAST(cond)  pthread_cond_broadcast(cond)
65
#define PyCOND_WAIT(cond, mut)  pthread_cond_wait((cond), (mut))
66
67
/* return 0 for success, 1 on timeout, -1 on error */
68
Py_LOCAL_INLINE(int)
69
PyCOND_TIMEDWAIT(PyCOND_T *cond, PyMUTEX_T *mut, long long us)
70
{
71
    struct timespec abs_timeout;
72
    _PyThread_cond_after(us, &abs_timeout);
73
    int ret = pthread_cond_timedwait(cond, mut, &abs_timeout);
74
    if (ret == ETIMEDOUT) {
  Branch (74:9): [True: 123k, False: 171k]
75
        return 1;
76
    }
77
    if (ret) {
  Branch (77:9): [True: 0, False: 171k]
78
        return -1;
79
    }
80
    return 0;
81
}
82
83
#elif defined(NT_THREADS)
84
/*
85
 * Windows (XP, 2003 server and later, as well as (hopefully) CE) support
86
 *
87
 * Emulated condition variables ones that work with XP and later, plus
88
 * example native support on VISTA and onwards.
89
 */
90
91
#if _PY_EMULATED_WIN_CV
92
93
/* The mutex is a CriticalSection object and
94
   The condition variables is emulated with the help of a semaphore.
95
96
   This implementation still has the problem that the threads woken
97
   with a "signal" aren't necessarily those that are already
98
   waiting.  It corresponds to listing 2 in:
99
   http://birrell.org/andrew/papers/ImplementingCVs.pdf
100
101
   Generic emulations of the pthread_cond_* API using
102
   earlier Win32 functions can be found on the web.
103
   The following read can be give background information to these issues,
104
   but the implementations are all broken in some way.
105
   http://www.cse.wustl.edu/~schmidt/win32-cv-1.html
106
*/
107
108
Py_LOCAL_INLINE(int)
109
PyMUTEX_INIT(PyMUTEX_T *cs)
110
{
111
    InitializeCriticalSection(cs);
112
    return 0;
113
}
114
115
Py_LOCAL_INLINE(int)
116
PyMUTEX_FINI(PyMUTEX_T *cs)
117
{
118
    DeleteCriticalSection(cs);
119
    return 0;
120
}
121
122
Py_LOCAL_INLINE(int)
123
PyMUTEX_LOCK(PyMUTEX_T *cs)
124
{
125
    EnterCriticalSection(cs);
126
    return 0;
127
}
128
129
Py_LOCAL_INLINE(int)
130
PyMUTEX_UNLOCK(PyMUTEX_T *cs)
131
{
132
    LeaveCriticalSection(cs);
133
    return 0;
134
}
135
136
137
Py_LOCAL_INLINE(int)
138
PyCOND_INIT(PyCOND_T *cv)
139
{
140
    /* A semaphore with a "large" max value,  The positive value
141
     * is only needed to catch those "lost wakeup" events and
142
     * race conditions when a timed wait elapses.
143
     */
144
    cv->sem = CreateSemaphore(NULL, 0, 100000, NULL);
145
    if (cv->sem==NULL)
146
        return -1;
147
    cv->waiting = 0;
148
    return 0;
149
}
150
151
Py_LOCAL_INLINE(int)
152
PyCOND_FINI(PyCOND_T *cv)
153
{
154
    return CloseHandle(cv->sem) ? 0 : -1;
155
}
156
157
/* this implementation can detect a timeout.  Returns 1 on timeout,
158
 * 0 otherwise (and -1 on error)
159
 */
160
Py_LOCAL_INLINE(int)
161
_PyCOND_WAIT_MS(PyCOND_T *cv, PyMUTEX_T *cs, DWORD ms)
162
{
163
    DWORD wait;
164
    cv->waiting++;
165
    PyMUTEX_UNLOCK(cs);
166
    /* "lost wakeup bug" would occur if the caller were interrupted here,
167
     * but we are safe because we are using a semaphore which has an internal
168
     * count.
169
     */
170
    wait = WaitForSingleObjectEx(cv->sem, ms, FALSE);
171
    PyMUTEX_LOCK(cs);
172
    if (wait != WAIT_OBJECT_0)
173
        --cv->waiting;
174
        /* Here we have a benign race condition with PyCOND_SIGNAL.
175
         * When failure occurs or timeout, it is possible that
176
         * PyCOND_SIGNAL also decrements this value
177
         * and signals releases the mutex.  This is benign because it
178
         * just means an extra spurious wakeup for a waiting thread.
179
         * ('waiting' corresponds to the semaphore's "negative" count and
180
         * we may end up with e.g. (waiting == -1 && sem.count == 1).  When
181
         * a new thread comes along, it will pass right through, having
182
         * adjusted it to (waiting == 0 && sem.count == 0).
183
         */
184
185
    if (wait == WAIT_FAILED)
186
        return -1;
187
    /* return 0 on success, 1 on timeout */
188
    return wait != WAIT_OBJECT_0;
189
}
190
191
Py_LOCAL_INLINE(int)
192
PyCOND_WAIT(PyCOND_T *cv, PyMUTEX_T *cs)
193
{
194
    int result = _PyCOND_WAIT_MS(cv, cs, INFINITE);
195
    return result >= 0 ? 0 : result;
196
}
197
198
Py_LOCAL_INLINE(int)
199
PyCOND_TIMEDWAIT(PyCOND_T *cv, PyMUTEX_T *cs, long long us)
200
{
201
    return _PyCOND_WAIT_MS(cv, cs, (DWORD)(us/1000));
202
}
203
204
Py_LOCAL_INLINE(int)
205
PyCOND_SIGNAL(PyCOND_T *cv)
206
{
207
    /* this test allows PyCOND_SIGNAL to be a no-op unless required
208
     * to wake someone up, thus preventing an unbounded increase of
209
     * the semaphore's internal counter.
210
     */
211
    if (cv->waiting > 0) {
212
        /* notifying thread decreases the cv->waiting count so that
213
         * a delay between notify and actual wakeup of the target thread
214
         * doesn't cause a number of extra ReleaseSemaphore calls.
215
         */
216
        cv->waiting--;
217
        return ReleaseSemaphore(cv->sem, 1, NULL) ? 0 : -1;
218
    }
219
    return 0;
220
}
221
222
Py_LOCAL_INLINE(int)
223
PyCOND_BROADCAST(PyCOND_T *cv)
224
{
225
    int waiting = cv->waiting;
226
    if (waiting > 0) {
227
        cv->waiting = 0;
228
        return ReleaseSemaphore(cv->sem, waiting, NULL) ? 0 : -1;
229
    }
230
    return 0;
231
}
232
233
#else /* !_PY_EMULATED_WIN_CV */
234
235
Py_LOCAL_INLINE(int)
236
PyMUTEX_INIT(PyMUTEX_T *cs)
237
{
238
    InitializeSRWLock(cs);
239
    return 0;
240
}
241
242
Py_LOCAL_INLINE(int)
243
PyMUTEX_FINI(PyMUTEX_T *cs)
244
{
245
    return 0;
246
}
247
248
Py_LOCAL_INLINE(int)
249
PyMUTEX_LOCK(PyMUTEX_T *cs)
250
{
251
    AcquireSRWLockExclusive(cs);
252
    return 0;
253
}
254
255
Py_LOCAL_INLINE(int)
256
PyMUTEX_UNLOCK(PyMUTEX_T *cs)
257
{
258
    ReleaseSRWLockExclusive(cs);
259
    return 0;
260
}
261
262
263
Py_LOCAL_INLINE(int)
264
PyCOND_INIT(PyCOND_T *cv)
265
{
266
    InitializeConditionVariable(cv);
267
    return 0;
268
}
269
Py_LOCAL_INLINE(int)
270
PyCOND_FINI(PyCOND_T *cv)
271
{
272
    return 0;
273
}
274
275
Py_LOCAL_INLINE(int)
276
PyCOND_WAIT(PyCOND_T *cv, PyMUTEX_T *cs)
277
{
278
    return SleepConditionVariableSRW(cv, cs, INFINITE, 0) ? 0 : -1;
279
}
280
281
/* This implementation makes no distinction about timeouts.  Signal
282
 * 2 to indicate that we don't know.
283
 */
284
Py_LOCAL_INLINE(int)
285
PyCOND_TIMEDWAIT(PyCOND_T *cv, PyMUTEX_T *cs, long long us)
286
{
287
    return SleepConditionVariableSRW(cv, cs, (DWORD)(us/1000), 0) ? 2 : -1;
288
}
289
290
Py_LOCAL_INLINE(int)
291
PyCOND_SIGNAL(PyCOND_T *cv)
292
{
293
     WakeConditionVariable(cv);
294
     return 0;
295
}
296
297
Py_LOCAL_INLINE(int)
298
PyCOND_BROADCAST(PyCOND_T *cv)
299
{
300
     WakeAllConditionVariable(cv);
301
     return 0;
302
}
303
304
305
#endif /* _PY_EMULATED_WIN_CV */
306
307
#endif /* _POSIX_THREADS, NT_THREADS */
308
309
#endif /* _CONDVAR_IMPL_H_ */