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Abstract

This research builds on prior work in Adaptive Optical Music Recognition (AOMR)
(Fujinaga 1996) to create a system for the interpretation of musical semantics. The
existing AOMR system is highly extensible, allowing the end user to add new symbols
and types of notations at run-time. It was therefore imperative that the new system
have the ability to easily define the musical semantics of those new symbols. Python
proved to be an effective tool with which to build an elegant and extensible system for
the interpretation of musical semantics.

1 Introduction

In recent years, the availability of large online databases of text have changed the face of
scholarly research. While those same collections are beginning to add multimedia content,
content-based retrieval on such non-textual data is significantly behind that of text. In the
case of music notation, captured images of scores are not sufficient to perform musically
meaningful searches and analyses on the musical content itself. For instance, an end user
may wish to find a work containing a particular melody, or a musicologist may wish to
perform a statistical analysis of a particular body of work. Such operations require a logical
representation of the musical meaning of the score. However, to date, creating those logical
representations has been very expensive. Common methods of input include manually enter-
ing data in a machine-readable format (Huron and Selfridge-Field 1994) or hiring musicians
to play scores on MIDI keyboards (Selfridge-Field 1993). Optical music recognition (OMR)
technology promises to accelerate this process by automatically interpreting the musical
content from the printed score.

Academic research in OMR is currently quite active, most notably by David Bainbridge
(Bainbridge 1997), Nicholas Carter (Carter 1989), and Ichiro Fujinaga (Fujinaga 1996).
Since modern Western music notation is over 350 years old, and has evolved significantly
during that time (Read 1969), the most successful OMR systems are those that are easily
adaptable to different types of input. Differences in music notation can occur both at
the symbolic (Figure 1) and semantic (Figure 2) levels. Inflexibility to such differences is
the primary drawback of commercial OMR products, such as MIDISCAN (Musitek 2000)
and Neuratron Photoscore (Neuratron 2000). Musicians and musicologists who work with
unusual notations, such as early or contemporary music, or physically damaged scores, such
as those found in many historical sheet music collections, will have a hard time with a
non-adaptive OMR system.

1.1 The Lester S. Levy Collection of Sheet Music

The present system is being developed as part of a larger project to digitize the Lester S.
Levy Collection of Sheet Music (Milton S. Eisenhower Library, Johns Hopkins University).
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Figure 1: The appearance of individual musical symbols can vary quite dramatically. (a)
two versions of typeset quarter rests; (b) two versions of typeset bass clefs; (c) handwritten,
hand-engraved and digitally typeset eighth notes

(a)

(b)

Figure 2: An excerpt from “No Doibt” by Loyset Compere in (a) its original white mensural
notation and (b) the equivalent in contemporary typeset notation.

The Levy Collection consists of over 29,000 pieces of popular American music. While the
Collection spans the years 1780 to 1960, its strength lies within its thorough documentation
of nineteenth and early twentieth-century America.

Phase One of the digitization project, now nearing completion, involves capturing the
images of the music in the collection and cataloging them with metadata such as author,
title and date. The portions of the collection in the public domain are available to the
general public at

http://levysheetmusic.mse.jhu.edu

Phase Two of the project involves using OMR to derive the musical semantics from the
score images. The OMR system being developed for this purpose must be highly flexible
and extensible to deal with the diversity of the collection.

2 Adaptive optical music recognition

For the purposes of our system, the problem of optical music recognition is divided into
two subproblems: the classification of the symbols on the page and the interpretation of
the musical semantics of those symbols. The first subproblem has been thoroughly explored
and implemented by Ichiro Fujinaga as the Adaptive Optical Music Recognition (AOMR)
system, summarized in this section. The second subproblem builds on this work and is the
subject of the remainder of this paper.

The AOMR system offers five important advantages over similar commercial offerings.
First, it can be run in batch processing mode, an essential feature for large musical col-
lections. It is important to note that most commercial software is intended for the casual
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user and does not scale for a large number of objects. Second, the software is written in
C and therefore is portable across platforms1. Third, the software can “learn” to recognize
different music symbols, an serious issue considering the diversity of the common music
notation. Fourth, the software is open-sourced. Finally, this software can separate full-text
lyrics that can be further processed using third-party optical character recognition (OCR)
software. Preliminary attempts at using the existing OMR system for OCR also show some
promise.

Using vertical run-length coding and projection analysis the staff lines are removed from
the input image file. Lyrics are also removed using various heuristic rules. The music
symbols are then segmented using connected-component analysis. A set of features, such
as width, height, area, number of holes, and low-order central moments, is stored for each
segmented graphic object and used as the basis for the adaptive recognition system based
on examples.

The exemplar-based classification model is based on the idea that objects are catego-
rized by their similarity to stored examples. The model can be implemented by the k -
nearest-neighbor (k -NN) algorithm (Cover and Hart 1967), which is a classification scheme
to determine the class of a given sample by its feature vector. Distances between feature
vectors of an unclassified sample and previously classified samples are calculated. The class
represented by the closest neighbor is then assigned to the unclassified sample. Besides its
simplicity and intuitive appeal, the classifier can be easily modified, by continually adding
new samples that it “encounters” into the database, to become an adaptive system (Aha
1997). In fact, “the nearest neighbor algorithm is one of the simplest learning methods
known, and yet no other algorithm has been shown to outperform it consistently” (Cost
and Salzberg 1992). Furthermore, the performance of the classifier can be dramatically
increased by using weighted feature vectors. Finding a good set of weights, however, is ex-
tremely time-consuming, thus a genetic algorithm (Holland 1975) is used to find a solution
(Wettschereck, Aha, and Mohri 1997). Note that the genetic algorithm can be run off-line
without affecting the speed of the recognition process.

3 Optical music interpretation

In general, Optical Music Interpretation (OMI) involves identifying the connections between
symbols and examining their relative positions. From this information, the semantics of the
score (eg. the pitches and durations of notes) can be derived.

3.1 Background

A number of past approaches to OMI have used two-dimensional graph grammars as the
central problem-solving mechanism (Fahmy and Blostein 1993) (Couasnon and Camillerapp
1994) (Baumann 1995). While (Fahmy and Blostein 1993) is relatively successful, it is un-
necessarily complicated by the false assumption that relationships between musical symbols
can occur in any arbitrary direction. The added complexity of this approach both decreases
maintainability and increases algorithmic complexity. Common music notation, even when
polyphonic, is essentially a one-dimensional stream that has a well-defined ordering in time:
It is never the case that musical objects in the future will affect objects in the past. This
property can be exploited by sorting all the objects by their temporal order into a one-
dimensional list. In fact, in the present system, all objects are stored in a simple Python
list during interpretation. Once sorted, all necessary operations for interpretation can be
performed on the objects quite conveniently. Any errors in the ordering of symbols, cited as
an major difficulty in OMI, in fact tend to be quite local and simple to resolve. Therefore,
while one-dimensional grammars, such as those used in natural language processing, are

1AOMR has been ported to GNU/Linux on x86 and PPC, Sun Solaris, SGI IRIX, NeXTSTEP, Macintosh
OS-X and Windows 95/98/NT/2000.
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potentially useful, I assert that graph grammars are unnecessarily complex for the problem
and therefore are not used in the present implementation.

Another approach to OMI is represented by the underlying data structure of a research-
oriented music notation application, Nutator (Diener 1989). Its TTREES (temporal trees)
are general data structures used to group objects in physical space and time. Each symbol
in a score is composed of a type name, an (x, y) coordinate and a z ordering. Collectively,
this object is referred to as a glyph. Glyphs exist in a two-and-a-half dimensional space
and thus can be stacked on top of each other. This stacking implicitly defines relationships
between glyphs. Glyphs in the foreground communicate with glyphs in the background
in order to determine their semantics. For instance, a note would determine its pitch by
communicating with the set of staff lines underneath it and the clef underneath and to
the left. This paradigm of communication between glyphs is used heavily throughout the
present system. The advantage of this approach is that glyphs can be edited at run-time
and the semantic results of those changes can be determined very efficiently.

3.2 Design criteria

The goals of the present OMI implementation are consistent with those of the underlying
AOMR system. The primary objectives are automatability (batch processing), portability
and extensibility. Python was chosen as the implementation language partly because of the
ease with which it can be used to meet all of these goals.

• Automatability: Python’s simple scripting features make it easy to customize the
workflow for different batch processing needs. In addition, OMI can be completely
driven from the command line.

• Portability: Since all of the input and output formats of OMI are in clear text, the
OMI system is portable to any platform for which there is a Python interpreter.

• Extensibility: Python’s flexible object-oriented paradigm allows for the semantics of
new symbols to be easily added to the system using inheritance. The exact definition
of those symbols can be refined interactively without a separate compile step.

4 Python implementation issues

4.1 Overview

The Optical Music Interpreter (OMI) system is implemented entirely in Python 1.5.2. It is
open-sourced under the GPL and available at:

http://mambo.peabody.jhu.edu/omr/

The overall execution of OMI proceeds linearly through the following phases:

1. Input. The bounding boxes are read in from AOMR. (Section 4.2).

2. Staff assignment and temporal sorting. Each glyph is assigned to a set of staff
lines and put in temporal order. (Section 4.3).

3. Reference assignment. Glyphs are assigned references to other related glyphs.
(Section 4.4).

4. Metric correction. Errors in the OMR stage are corrected by examining the metrical
content and physical alignment of glyphs. (Section 4.5).

5. Output. The logical representation is output. Attributes of the individual glyphs are
determined on-the-fly based on the references made in the reference assignment phase.
(Section 4.6).
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This section will discuss each phase in turn, highlighting the issues of interest to Python
programmers in general. More detailed implementation documentation is available online.

4.2 Input

There are two kinds of output from Ichiro Fujinaga’s AOMR used by OMI.

• The first is a list describing the musical symbols on the page. Each symbol entry
contains a string defining its type, a rectangular bounding box relative to the page,
and a hotspot coordinate.

• The second is a list of bounding boxes around the individual pieces of text in the image.
The small images in these bounding boxes are extracted using the Python Imaging
Library (PIL) and sent to a third-party Optical Character Recognition (OCR) system2.
The results of the OCR are merged with the original text bounding boxes and sent
back to OMI as glyphs.

These glyphs are interpreted by OMI, which then outputs a musical description. To
avoid the necessity of writing a custom parser for these input files, the files themselves are
formatted as a Python list. Reading all this in then takes only four lines of code:

f d = open ( f i l e n ame , ’r’ ) # Open the f i l e

i n pu t = fd . read ( ) # Read i t s content s in to a s t r i n g

f d . c l o s e ( ) # Close the f i l e

data = e v a l ( i n pu t ) # Convert the s t r i n g to a l i s t o f

# elements by eva luat ing i t as

# Python code

Each entry in the input list contains a string defining the type of symbol. These are
converted into actual object instances by taking advantage of Python’s ability to turn strings
into code on the fly.

f o r e l ement i n data :
# This i s the name o f the c l a s s

name = element [ 0 ]
# I f the s t r i n g i s in f a c t the name o f a c l a s s we

# can c r e a t e an i n s t an c e . . .

i f name i n g l yph . d i c t . k ey s ( ) :
c r e a t e = "glyph." + name

# . . . o the rw i s e c r e a t e a d e f au l t c l a s s i n s t an c e

e l s e :
c r e a t e = "glyph.DEFAULT"

# crea t e the new in s t an c e us ing apply .

# the new ob j e c t i s i n i t . to the c o r r e c t bounding box

ng = app l y ( e v a l ( c r e a t e ) , ( name ,
e l ement [ 4 ] ,
( ( e l ement [ 7 ] ) − ( PAGE HEIGHT ) ) ∗ −1 ,
e l ement [ 6 ] ,
( ( e l ement [ 5 ] ) − ( PAGE HEIGHT ) ) ∗ −1 ,
e l ement [ 8 ] ,
( ( e l ement [ 9 ] − ( PAGE HEIGHT ) ) ∗ −1 ) ) )

# add the new element to the l i s t

g l y p h l i s t . append ( ng )

The advantage of this approach is that new classes of symbols can be added to the
system merely by writing a new Python class in the appropriate module. There is no need

2To date, we have experimented with gocr (Schulenberg 2000) and Pixel/FX! 2000 (Mentalix 2000), but
using AOMR itself for OCR has also shown some promise.
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Figure 3: A dotted quarter note. The dot increases the duration of the quarter note by
50%.

to explicitly register the new class in a prototype database in order for the parser to handle
it (Gamma, Helm, Johnson, and Vlissides 1995).

4.3 Staff assignment and temporal sorting

This phase is concerned with sorting the glyphs into a musically meaningful order. An
example of this temporal ordering is shown in Figures 4 and 5.

Staves serve to put things in temporal order, in much the same way that a line of text
is read from left to right. Therefore, before the glyphs can be sorted, they must be assigned
to a particular staff. The glyphs are then sorted first by part, then voice, and then staff.
Next, the glyphs are sorted in temporal order from left to right. Finally, glyphs that occur
at the same vertical position are sorted top to bottom. This multi-level sorting is performed
in one step using Python’s built-in quick sort function using a custom ordinal function.

For efficient retrieval of information in the glyph list, it is indexed by class. It is then
trivial to retreive all of the glyphs of a certain class from the score and ignore all others.

4.4 Reference assignment

The purpose of this phase is to build the relationships between glyphs necessary to fully
derive their musical meaning. Most of the relationship algorithms are simple iterations over
the glyph list (or indexed subsets of that list) and therefore run in linear time.

An interesting use of Python’s object-oriented paradigm is the way in which run-time
type inspection can used to keep the reference-building algorithms as abstract as possible.
To support this, the glyph classes are all part of a complex multi-tiered hierarchy (Figure
6). The concrete classes correspond directly to the physical glyphs on the score retreived
by AOMR. Then, using an object-oriented style popular in Eiffel (Meyer 1997) and the
Java Foundation Classes (Sun Microsystems 1998), most of the abstract base classes are
named using adjectives describing their ability (eg. DOTTABLE, ARTICULATABLE, PITCHED).
Not only does this improve the readibility of the code, it also allows the algorithms to
choose to operate on specific sets of glyphs based on their high-level abilities rather than
their low-level identity.

For example, all classes that can have their duration augmented by a dot inherit from
the DOTTABLE class (Figure 3). This includes both notes and rests. The algorithm that
assigns dots to DOTTABLEs can simply use the expression

x.isinstance(DOTTABLE)

to determine if glyph x can be dotted. It does not need to know that in fact all notes and
rests can be dotted, since this is already implied by the class heirarchy.

Such a paradigm is difficult to implement in more static languages such as ANSI C++
that do not have complete run-time type inspection.

4.5 Metric correction

Occasionally, noise in the input image can cause errors at the recognition stage. Missing or
erroneous glyphs cause voices to have too few or too many beats per measure. Fortunately,
many of these errors can be corrected by exploiting a common feature of typeset music:

6



Figure 4: An example duet to demonstrate temporal ordering

PART 0

STAFF 0 (implied system break)
treble clef

flat

4/4

c d e c f a

barline

b[ d d c

barline

STAFF 2 (implied system break)
treble clef

flat

f e f c d e f g

barline

f e f

final barline

PART 1

STAFF 1 (implied system break)
bass clef

etc.
STAFF 3 (implied system break)

etc.

Figure 5: A simplified listing of the example score in Figure 4 showing temporal ordering.
Note that staff glyphs double as implied system breaks and the entire contents of the treble
clef part appear before the bass clef part.
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Figure 7: Each gray bar represents a quarter note beat. All notes occurring on that beat
are vertically aligned.

To ease sight-reading, notes that occur at the same time are aligned vertically within each
system (set of staves) of music3 (Figure 7). OMI provides a number of algorithms to correct
durational information based on this feature of music. They include:

1. Bar rest: Fixes measures with a single half or whole rest.

2. Whole/half: Converts whole rests and half rests and vice versa.

3. Bad dot: Removes erroneous augmentation dots.

4. Barline to stem: Converts stems that were misinterpreted as barlines back to stems.

5. Splice: Cuts long measures into shorter ones.

6. Rebuild: Changes durations of notes so that they correspond with vertically aligned
notes in other parts.

7. Extend: Adds dummy space to the end of measures so that the total length across
all parts is equal.

These algorithms are described in more detail online.

4.6 Output

One of the long-standing difficulties in the field of music information retrieval is the lack
of a standard representation format for logical musical data (Selfridge-Field 1997). It is
therefore necessary for the present system to support different output formats for different
needs. Relying on external converters, as many word processors do, is not ideal since
many musical representation formats have radically different ordinal structures and scope.
Instead, OMI uses pluggable back-ends that map from OMI’s internal data structure, a list
of glyphs, to a given output file format. Presently, output to GUIDO (Hoos and Hamel
1997) is implemented, but other musical representation languages such as Lilypond Mudela
(Nienhuys and Nieuwenhuizen 1998) are planned. MIDI (MIDI Manufacturers Association
Inc. 1986) is currently supported through a third party tool that converts GUIDO to MIDI
(Martin and Hoos 1997).

In general, output is generated in two phases. First, the pluggable back-end is given a
chance to reorder the glyph list. This is useful since the ordering of objects differs across
formats. For example, GUIDO files are organized part by part, whereas Type 0 MIDI files
interleave the parts together by absolute time. After re-ordering, the output function of
each glyph is called. The output functions are implemented in the pluggable back-end and

3Some older scores in the Levy Collection do not have this property. In this case, metric correction can
be turned off.
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Core class in glyph.py Extension class in guido.py

c l a s s CLEF(CLEARS ACCS , BASE ) :
m i d d l e l i n e = B
oc tave = 1
k e y s i g = None
f i x e d gu i d o name = "treble"

def r e p r ( s e l f ) :
# etc . . .

def g e t wp i t c h ( s e l f , s t a f f l i n e ) :
# etc . . .

def g e t o c t a v e ( s e l f , s t a f f l i n e ) :
# etc . . .

c l a s s CLEF(GUIDO) :
def b a s g u i d o c l e f ( s e l f ) :

# etc . . .

def ba s gu i d o ( s e l f ) :
# etc . . .

Figure 8: The core functionality of the CLEF class is implemented in the class on the left,
and the extensions that allow GUIDO output are implemented in the class on the right.
The extension class’ members are merged into the core class by class augmentation.

merged into the core glyph classes using a technique, class augmentation, that exploits the
run-time flexibility of Python classes.

Class augmentation adds members to a core class from an extension class loaded at
run-time. The matching of core class to extension class is determined by their names (i.e.
name member). For a concrete example, consider the class definitions in Figure 8. The

class augmentation procedure will add the GUIDO-specific functions in the extension class
to the core class, since they both have the same name (CLEF). The merging itself is achieved
by adding the extension class to the front of the tuple of base classes (i.e. bases member)
of the core class. This serves to put the extension’s members on the core class’ search path.

The augmentation is performed on all the classes in a given module, so it is easy to
extend large numbers of classes with one function call. The following function takes two
modules as inputs and augments all of the classes in core for which there exists an extension
class in ext.

def me r g e c l a s s e s ( co r e , e x t ) :
# Dict i onary to map the names o f c l a s s e s to c l a s s e s

k l a s s e s = {}

# F i l l the d i c t i ona ry with a l l c l a s s e s in co re module

f o r k l a s s i n v a r s ( co r e ) . v a l u e s ( ) :
i f type ( k l a s s ) == typ e s . C las sType :

k l a s s e s [ k l a s s . name ] = k l a s s

# Add extens i on c l a s s e s to the b a s e s tup l e o f the

# core c l a s s e s whenever the re i s a match by name

f o r k l a s s i n ex t . v a l u e s ( ) :
i f ( type ( k l a s s ) == typ e s . C las sType and

k l a s s . name i n k l a s s e s . k ey s ( ) ) :
( k l a s s e s [ k l a s s . name ] . b a s e s =
t u p l e ( [ k l a s s ] + l i s t ( k l a s s e s [ k l a s s . name ] . b a s e s ) ) )

The primary advantage to this approach is its robust handling of extensibility: when new
classes are added to the core heirarchy, they do not to be updated in all output extension
modules.
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4.7 Graphical interactive self-debugger

Allowing the user to interact with the data of a running program is one of Python’s greatest
assets, and greatly reduces the length of the develop-test cycle (Lutz 1996). However, inter-
acting with graphical data, such as that in OMI, is quite cumbersome using only text-based
tools. For example, selecting (x, y) coordinates with a mouse is much easier than entering
them numerically. For this reason, a graphical, interactive debugger was implemented that
allows the programmer to examine the data structures of a running OMI session and execute
arbitrary Python code upon it. This is analogous to running Python in interactive mode,
except that it offers a graphical way of interacting with positional data.

The overall debugging system is divided between an image viewer and OMI debugging
system itself. The source image is displayed using the custom focus image viewer, im-
plemented in C++ using the Gtk−− toolkit. Besides providing the basic functionality of
scaling and displaying the image, the viewer also accepts messages over a socket to colorize
or draw rectangles on arbitrary parts of the image. On the Python side, a simple GUI im-
plemented using the Python-Gtk+ bindings communicates with the viewer to allow the user
to display or modify the logical data in different ways. To support the coloring of objects,
each glyph has a color function that sends a message to the viewer regarding its position.
In addition, the repr function of each glyph serves to both (a) return a text dump of all
its pertinent data members in a human readable form and (b) call its color function so it
will be highlighted in the viewer.

The GUI uses a notebook interface to divide the functionality into different pages. The
pages pertaining to debugging are described below.

4.7.1 Attribute page

Each button on the attribute page colors the score based on different criteria. For

example, the wpitch (“white pitch”) button will color each notehead based on its note

name (i.e. all a’s will be red, all b’s will be yellow etc.) While not particularly useful to an
end user, coloring is an efficient way for the developer to debug an algorithm and ensure
that it is producing the correct results.
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4.7.2 Class browser page

The class browser page displays a list of all classes in the glyph heirarchy (Figure 6).
Clicking on an entry highlights all glyphs of that class in the viewer.

4.7.3 Glyph info page

Clicking on a glyph in the viewer displays all of its data members on the glyph info page.
The text displayed on the glyph info page is taken directly from the output of the glyph’s
repr function.
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4.7.4 List browser page

This page displays a list of all glyphs in the score in their temporal order. This page
helps to debug the overall sorting algorithm, as well as any algorithms that rely on the
relative position of glyphs within the glyph list. Clicking on an entry in the list highlights
that glyph in the viewer.

4.7.5 Python console page

The Python page provides a console with an interactive Python session. Useful variables are
defined in local scope, such as the glyph list, so that the developer can directly manipulate
the data and see the results immediately. Printing out a glyph object (i.e. by typing the
variable name and pressing Enter) displays its data members in the console and colorizes it
in the viewer.

4.7.6 MIDI page

The MIDI page converts the GUIDO output of OMI to MIDI using the third-party tool
gmn2midi. The result is then played using a user-defined MIDI file player.

5 Demonstration

This section demonstrates how a single measure from a score in the Levy Collection is
converted into a number of different formats by the AOMR/OMI system.

5.1 Original image

The original image was scanned at 300 DPI, 8-bit grayscale. Note that there is a fair amount
of noise due to age of the score.
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5.2 PostScript output

The PostScript output is an exact one-to-one copy of the recognized symbols on the page,
recreated using PostScript primitives and the Adobe Sonata font. This phase is analogous
to the glyph list that forms the bridge between AOMR and OMI.

5.3 GUIDO output

This is the logical interpretation of the score in GUIDO format (Hoos and Hamel 1997).
Note that the format is human readable and fairly intuitive.

% GUIDO Music Notation format .

% Automat ica l ly generated from a scanned image .

{ [ \ beamsOff \ c l e f <” t r e b l e ”> \ key<0>
b 1∗1/4 . b 1∗1/8 a 1∗1/8 g 1∗1/8 f #1∗1/8 g 1∗1/8 |
] ,
[ \ beamsOff \ c l e f <” t r e b l e ”> \ key<0>
∗1/8 \beam ( { b 0 ∗ 1 / 8 , d 1 ∗ 1 / 8 , g 1∗1/8 }

{ b 0 ∗ 1 / 8 , d 1 ∗ 1 / 8 , g 1∗1/8 }
{ b 0 ∗ 1 / 8 , d 1 ∗ 1 / 8 , g 1∗1/8 } )

∗1/8 \beam ( { b 0 ∗ 1 / 8 , d 1 ∗ 1 / 8 , g 1∗1/8 }
{ b 0 ∗ 1 / 8 , d 1 ∗ 1 / 8 , g 1∗1/8 }
{ b 0 ∗ 1 / 8 , d#1∗1/8 , g 1 ∗ 1 / 8 } ) |

] ,
[ \ beamsOff \ c l e f <”bas s ”> \ key<0>
{ g−1∗1/4 , g 0∗1/4 } ∗1/4 { g−1∗1/4 , g 0∗1/4 } ∗1/4 |
] }

5.4 Re-rendered notation

The following is the output of OMI re-rendered using the GUIDO NoteServer available
on-line at
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http://tempo.iti.informatik.tu-darmstadt.de/salieri/nview/noteserver.html

The exact positions of the notes are determined solely from the logical representation
of the score. Since GUIDO NoteServer aims to have some sense of musical intelligence,
it added the implied double barlines at the end of the score, even though they were not
specified in the GUIDO input file.

6 Conclusions

The present system handles with many of the inherent difficulties of optical music interpreta-
tion in an elegant and simple way. This elegance is in so small part due to its implementation
in Python, which made easy work of the three main design criteria: automatability, porta-
bility and extensibility. However, as Phase Two of the Levy project gets under way, that
project should provide a valuable in-house test bed to suggest improvements and refinements
the system. Due to its solid foundation in a flexible object-oriented language, these changes
should remain relatively simple to implement, keeping development time to a minimum. Ul-
timately, we hope other large sheet music digitization projects will use the system because
it presents a flexible and extensible alternative to closed systems.

7 Acknowledgments

This work was conducted as part of the Lester S. Levy Collection of Sheet Music of the
Digital Knowledge Center, Milton S. Eisenhower Library of the Johns Hopkins University.
Funding was provided in part by the National Science Foundation, the Institute for Museum
and Library Services, and the Levy family.

References

Aha, D. W. (1997). Lazy learning. Aritificial Intelligence Review 11 (1), 7–10.

Bainbridge, D. (1997). Extensible optical music recognition. Ph. D. thesis, University of
Canterbury.

Baumann, S. (1995). A simplified attributed graph grammar for high-level music recog-
nition. In International Conference on Document Analysis and Recognition.

Carter, N. (1989). Automatic Recognition of Printed Music in the Context of Electronic
Publishing. Ph. D. thesis, University of Surrey.

Cost, S. and S. Salzberg (1992). A weighted nearest neighbor algorithm for learning with
symbolic features. Machine Learning (10).

Couasnon, B. and J. Camillerapp (1994). Using grammars to segment and recognize music
scores. In International Association for Pattern Recognition Workshop on Document
Analysis Systems.

15



Cover, T. and P. Hart (1967). Nearest neighbour pattern classification. IEEE Transactions
on Information Theory 13 (1), 21–7.

Diener, G. (1989). TTREES: A tool for the compositional environment. Computer Music
Journal 13 (2), 77–85.

Fahmy, H. and D. Blostein (1993). A graph grammar programming style for recognition
of music notation. Machine Vision and Applications .

Fujinaga, I. (1996). Adaptive Optical Music Recognition. Ph. D. thesis, McGill University.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University
of Michigan Press.

Hoos, H. H. and K. Hamel (1997). Guido music notation version 1.0: Specification
part i, basic guido. Technical Report TI 20/97, Technische Universität Darmstadt.
http://www.informatik.tu-darmstadt.de/AFS/GUIDO/docu/spec1.htm.

Huron, D. and E. Selfridge-Field (1994). Research notes (the J. S. Bach Brandenburg
Concertos). Software.

Lutz, M. (1996). Programming Python. O’Reilly.

Martin, L. and H. H. Hoos (1997). gmn2midi, version 1.0. Computer Program (Microsoft
Windows, Apple Macintosh OS, IBM OS/2, UNIX). http://www.informatik.tu-
darmstadt.de/AFS/GUIDO/.

Mentalix, I. (2000). Pixel/fx! 2000. Computer Program (UNIX).
http://www.mentalix.com/.

Meyer, B. (1997). Object-Oriented Software Construction (Second Edition ed.). Prentice
Hall.

MIDI Manufacturers Association Inc. (1986). The Complete MIDI 1.0 Specification. MIDI
Manufacturers Association Inc. http://www.midi.org/.

Musitek (2000). MIDISCAN. Computer Program (Microsoft Windows).
http://www.musitek.com/.

Neuratron (2000). Photoscore. Computer Program (Microsoft Windows, Apple Macintosh
OS). http://www.neuratron.com/photoscore.htm.

Nienhuys, H.-W. and J. Nieuwenhuizen (1998). Lilypond User Documentation (containing
Mudela language description). GNU project. http://www.gnu.org/software/lilypond/.

Read, G. (1969). Music Notation: A Manual of Modern Practice. New York: Taplinger.

Schulenberg, J. (2000). gocr. Computer Program (Microsoft Windows, UNIX).
http://sourceforge.net/projects/jocr/.

Selfridge-Field, E. (1993). The MuseData universe: A system of musical information.
Computing in Musicology 11.

Selfridge-Field, E. (1997). Beyond codes: Issues in musical representation. In E. Selfridge-
Field (Ed.), Beyond MIDI: The Handbook of Musical Codes. MIT Press.

Sun Microsystems (1998). Java Foundation Classes. http://java.sun.com/products/jfc/:
Sun Microsystems.

Wettschereck, D., D. W. Aha, and T. Mohri (1997). A review and empirical evaluation of
feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence
Review 11, 272–314.

16


