
Selected Research in Computer Music

Michael Droettboom

Submitted in partial fulfillment of the requirements for the degree of

Master of Music in Computer Music Research

at The Peabody Conservatory of Music,

The Peabody Institute of the Johns Hopkins University

Baltimore, Maryland, United States of America

April, 2002

Copyright c© 2002 by Michael Droettboom,

All rights reserved.

Peabody Conservatory of Music

Johns Hopkins University

Statement of Acceptance

Master of Music in Computer Music (Research)

Be it known that the attached research thesis submitted by Michael Droettboom has

been accepted in partial fulfillment of the requirements for the degree of Master of Music

in Computer Music (Research).

Computer Music Faculty

Date

Computer Music Faculty

Date

ii

Abstract

This thesis describes three interrelated projects that cut across the author’s interests in musical

information representation and retrieval, programming language theory, machine learning and hu-

man/computer interaction.

I. Optical music recognition. This first part introduces an optical music interpretation (OMI)

system that derives musical information from the symbols on sheet music.

The first chapter is an introduction to OMI’s parent field of optical music recognition (OMR),

and to the present implementation as created for the Levy project.

It is important that OMI has a representation standard in which to create its output. There-

fore, the second chapter is a somewhat tangential but necessary study of computer-based musical

representation languages, with particular emphasis on GUIDO and Mudela.

The third and core chapter describes the processes involved in the present optical music in-

terpretation system. While there are some details related to its implementation in the Python

programming language, most of the material involves issues surrounding music notation rather than

computer programming.

The fourth chapter demonstrates how the logical musical data generated by the OMI system

can be used as part of a musical search engine.

II. Tempo extraction. The second part presents a system to automatically obtain the tempo and

rubato curves from recorded performances, by aligning them to strict-tempo MIDI renderings of the

same piece of music. The usefulness of such a system in the context of current musicological research

is explored.

III. Realtime digital signal processing programming environment. Lastly, a portable and

flexible system for realtime digital signal processing (DSP) is presented. This system is both easy-

to-use and powerful, in large part because it takes advantage of existing mature technologies. This

framework provides the foundation for easier experimentation in new directions in audio and video

processing, including physical modeling and motion tracking.

iii

Contents

List of Figures vii

List of Tables ix

I Optical music interpretation 1

1 Introduction 2
1.1 The Lester S. Levy Collection of Sheet Music 3
1.2 Overview . 4

1.2.1 Adaptive optical music recognition 4
1.2.2 Optical music interpretation . 5

1.3 Overview . 7

2 Musical representation languages 8
2.1 Resources . 9
2.2 Background . 9
2.3 Basic syntax . 10
2.4 Extension framework . 12
2.5 Human issues . 13

2.5.1 Brevity vs. clarity . 13
2.5.2 Representational adequacy and context-dependence 13

2.6 Implementation issues . 14
2.6.1 Parsing . 14

2.7 Logical abstraction . 15
2.7.1 Logical abstraction in text typesetting 15
2.7.2 Logical abstraction in music typesetting 15
2.7.3 Bibliographic information . 16

2.8 Software tools . 16
2.8.1 GUIDO . 16
2.8.2 Mudela . 18

2.9 Conclusion . 19

iv

3 Implementation of an optical music interpretation system 20
3.1 Input . 21

3.1.1 XML glyph format . 21
3.1.2 Glyph list . 23

3.2 Assembly . 23
3.3 Sorting . 24

3.3.1 Handling multi-page scores . 24
3.3.2 Assigning glyphs to staves . 25
3.3.3 Grouping staves into systems . 27
3.3.4 Grouping staves into parts . 27
3.3.5 Temporal sorting . 27

3.4 Reference assignment . 28
3.4.1 Class hierarchy . 29
3.4.2 Pitch . 29
3.4.3 Duration . 35
3.4.4 Voices . 39
3.4.5 Chords . 40
3.4.6 Articulation . 41
3.4.7 Text . 42

3.5 Metric correction . 43
3.5.1 Overview . 43
3.5.2 Classification . 43
3.5.3 Algorithms for metric correction . 44

3.6 Output . 50
3.6.1 File formats . 50
3.6.2 Pluggable back-ends . 50
3.6.3 Mixin classes . 51
3.6.4 Demonstration of output . 52

3.7 Interactive self-debugger . 53
3.7.1 Overview . 55
3.7.2 Pages . 55
3.7.3 Reflections on the interactive self-debugger 59

3.8 Conclusion . 59

4 Symbolic music information retrieval 60
4.1 Introduction . 60
4.2 Other search engines . 60

4.2.1 Themefinder . 61
4.2.2 MELDEX . 62

4.3 Capabilities . 62
4.3.1 Extensibility . 62
4.3.2 Meeting diverse user requirements 63

4.4 The core search engine . 63
4.4.1 Inverted lists . 64

4.5 The musical search engine . 65

v

4.5.1 Secondary indices . 66
4.5.2 Partitions . 69
4.5.3 Regular expressions . 72

4.6 Conclusion . 72

References 73

II Tempo extraction 78

5 RUBATO: A system for determining tempo fluctuation in recorded music 79
5.1 Introduction . 79
5.2 A brief history of musical time . 80

5.2.1 Current research . 81
5.2.2 Tempo extraction . 82

5.3 The RUBATO program . 84
5.3.1 Smoothing the audio signal . 84
5.3.2 Dynamic programming algorithm . 85
5.3.3 Extracting tempo curves . 87
5.3.4 More examples . 91

5.4 Conclusion . 93

References 94

III Realtime digital signal processing environment 96

6 RED: Realtime Environment for Digital Signal Processing 97
6.1 Introduction . 97
6.2 Architecture . 98

6.2.1 Overview . 98
6.2.2 Goals . 98
6.2.3 General . 99
6.2.4 Modularized . 99
6.2.5 Realtime, low-latency performance 102
6.2.6 Built from existing tools . 103
6.2.7 Portable . 106

6.3 Usage examples . 106
6.3.1 Unit generator objects . 106
6.3.2 Connecting signals . 108

6.4 Conclusion . 111

References 112

vi

List of Figures

1.1 Differences in music typsetting. 3
1.2 Differences in musical semantics. 3

2.1 GUIDO NoteServer . 17
2.2 Denemo music editor. 19

3.1 Some example glyphs from the XML output produced by AOMR. 22
3.2 Broken lines that are rejoined by the assembly phase. 23
3.3 Handling multi-page scores. 25
3.4 Assigning glyphs to staves. 26
3.5 References required to fully determine a notehead’s meaning. 28
3.6 The pitch hierarchy. 30
3.7 Different clefs. 31
3.8 Poorly aligned ledger lines. 32
3.9 The finite-state automaton (FSA) used to locate and build key signatures. . 34
3.10 The durational heirarchy. 35
3.11 Chords containing seconds. 37
3.12 Augmentation dots. 38
3.13 A notehead with two stems is separated into two notes. 38
3.14 Splitting multi-voiced staves. 40
3.15 Chords. 41
3.16 Articulations. 42
3.17 Whole rests depend on the time signature. 45
3.18 Erroneous dot removal algorithm . 46
3.19 Barline to stem algorithm. 47
3.20 Splice algorithm . 48
3.21 Readjust algorithm with an exact match. 49
3.22 Readjust algorithm with estimation. 50
3.23 The original image (for output demonstration). 52
3.24 The PostScript output (of output demonstration). 53
3.25 The GUIDO output (of output demonstration). 54
3.26 The output from GUIDO NoteServer (of output demonstration). 54
3.27 Attribute page in the interactive debugger. 56

vii

3.28 Classes page in the interactive debugger. 56
3.29 Glyph info page in the interactive debugger. 57
3.30 List browser page in the interactive debugger. 58

4.1 The importance of rhythmic specificity. 61
4.2 Workflow diagram of the musical search engine. 64
4.3 Musical example used to demonstrate the search engine. 66
4.4 Fully specified symbolic representation of the example in Figure 4.3. 68
4.5 The example measure of music showing moment numbers. 71

5.1 Dr. Arthur B. Lintgen . 80
5.2 Audio waveform of a MIDI rendering. 85
5.3 Audio waveform of a performance by Glenn Gould. 85
5.4 The gross contours of two recordings. 86
5.5 Match path of the Bach fugue. 88
5.6 Tempo curve of Gould’s 1963 recording of the Bach fugue. 90
5.7 Tempo curves of 1955 and 1982 Gould recordings. 91
5.8 Tempo curves of recordings of Fauré’s Requiem. 92

viii

List of Tables

3.1 Metric correction algorithms . 44
3.2 An example of a core and mixin class. 51

5.1 Results of the dynamic programming algorithm. 87

6.1 Compatibility matrix of the various third party tools used to build RED. . 107

ix



Part I

Optical music interpretation



Chapter 1

Introduction

In recent years, the availability of large online databases of text have created entirely

new methods of scholarly research. Those same collections are beginning to add multimedia

content; unfortunately, the art and science of content-based retrieval of non-textual data is

significantly behind that of text. In the case of music notation, captured images of scores are

insufficient to perform musically meaningful searches and analyses on the musical content

itself. For instance, a casual user may wish to find a work containing a particular melody, or

a musicologist may wish to perform a statistical analysis on a particular body of work. Such

operations require a logical representation of the musical meaning of the score. To date,

creating those logical representations has been very expensive. Methods of input include

manually entering data in a machine-readable format (Huron 1994) or hiring musicians to

play scores on MIDI keyboards (Selfridge-Field 1993). Optical music recognition (OMR)

technology promises to accelerate this conversion by automatically interpreting the musical

content directly from a digitized image of the printed score.

There has already been a moderate amount of academic research in OMR, most notably

by Bainbridge (1997), Fujinaga (1996) and Ng (1992). Since the Western music notation

system is over 350 years old, and has evolved significantly during that time (Read 1969;

Gerou and Lusk 1996), the most successful OMR systems are those that are easily adaptable

to different types of input. Differences in music notation can occur both at the symbolic

(Figure 1.1) and semantic (Figure 1.2) levels. Inflexibility to such differences is the primary

drawback of commercial OMR products, such as MIDISCAN (Musitek 2000) and Photoscore

(Neuratron 2000). Musicians and musicologists who work with unusual notations, such as

early or contemporary music, or physically damaged scores, such as those found in many



(a) (b) (c)

Figure 1.1: Differences in music typesetting: (a) two different typeset quarter rests; (b) two
different typeset bass clefs; (c) handwritten, hand-engraved and digitally typeset eighth
notes.

(a)

(b)

Figure 1.2: Differences in musical semantics. An excerpt from an anonymous plain chant
composition from the Typographica Medicea in (a) it original square note neums, and (b)
the equivalent in modern notation.

historical sheet music collections, are likely to have a difficult time with a non-adaptive

OMR system.

1.1 The Lester S. Levy Collection of Sheet Music

The present system is being developed as part of a larger project to digitize the Lester S.

Levy Collection of Sheet Music (Milton S. Eisenhower Library, Johns Hopkins University)

(Choudhury et al. 2000). The Levy Collection consists of over 29,000 pieces of popular

American music. While the Collection spans the years 1780 to 1960, its strength lies within

its thorough documentation of nineteenth and early twentieth-century America.

Phase One of the digitization project involved optically scanning the music in the col-

lection and cataloging them with metadata such as author, title, and date. The portions of

the collection in the public domain are available to the general public at

http://levysheetmusic.mse.jhu.edu.



Phase Two of the project involves using OMR to derive the musical information from

the score images. The OMR system being developed for this purpose must be highly flexible

and extensible to deal with the diversity of the collection.

1.2 Overview

For the purposes of this discussion, the problem of optical music recognition is divided

into two subproblems: the classification of the symbols on the page and the interpretation of

the musical semantics of those symbols. The first subproblem has been thoroughly explored

and implemented by Fujinaga as the Adaptive Optical Music Recognition (AOMR) system,

summarized below. The second subproblem builds on this work and is the subject of Part

I of this thesis.

1.2.1 Adaptive optical music recognition

The AOMR system offers five important advantages over similar commercial offerings.

• Automatability. Multiple scores can be interpreted in sequence automatically, an

essential feature for large musical collections.

• Portability. The software is written in portable C and C++ and therefore runs on

many platforms.1

• Extensibility. AOMR can learn to recognize different music symbols, a serious issue

considering the diversity of common music notation.

• Freedom. The software is open-source and licensed under the GPL (Free Software

Foundation 1991).

The AOMR process proceeds through a number of steps. First, using vertical run-length

coding and projection analysis, the staff lines are removed from the input image file. Lyrics

are also removed using various heuristics. Commonly occurring symbols, such as stems and

noteheads, are then identified and removed using simple filtering techniques. The remaining

musical symbols are segmented using connected-component analysis. A set of features, such

as width, height, area, number of holes, and low-order central moments, is stored for each

segmented graphic object and used as the basis for the adaptive recognition system.
1AOMR has been ported to GNU/Linux on x86 and PPC, Sun Solaris, sgi IRIX, NeXTSTEP, Apple

Macintosh OS-X, and Microsoft Windows 95/98/NT/2000 all using the GNU gcc compiler.



The exemplar-based classification model is based on the idea that objects can be cate-

gorized by their similarity to stored examples. In AOMR, this model is implemented using

the k -nearest-neighbor (k -NN) algorithm (Cover and Hart 1967), which is a classification

scheme to determine the class of a given sample by its feature vector. Distances between

feature vectors of an unclassified sample and previously classified samples are calculated.

The class represented by the closest neighbors is then assigned to the unclassified sample.

Besides its simplicity and intuitiveness, the classifier can be easily modified. By continu-

ally adding new samples as it encounters them into the database, it becomes an adaptive

learning system (Aha 1997). In fact, “the nearest neighbor algorithm is one of the simplest

learning methods known, and yet no other algorithm has been shown to outperform it con-

sistently” (Cost and Salzberg 1993). Furthermore, the performance of the classifier can be

dramatically increased by using weighted feature vectors. Finding a good set of weights,

however, is extremely time-consuming. Thus, a genetic algorithm (Holland 1975) is used

to find a solution (Wettschereck et al. 1997). Note that the genetic algorithm can be run

off-line without slowing the speed of the recognition process.

Recently, the AOMR system is being phased out in favor of a more general and powerful

system, Gamera, for general-purpose document recognition (MacMillan et al. 2001).

1.2.2 Optical music interpretation

In general, the Optical Music Interpretation (OMI) phase involves identifying the re-

lationships between symbols by examining their relative positions. From this information,

the semantics of the score (e.g. the pitches and durations of notes) can be derived. Lastly,

many errors during the AOMR stage can be corrected by examining the consistency of

symbols on the page.

Background

A number of approaches to OMI use two-dimensional graph grammars as the central

problem-solving mechanism (Fahmy and Blostein 1993, Couasnon and Camillerapp 1994,

Baumann 1995). Graph grammars parse the relationships between symbols on the page by

matching them to a set of syntactic patterns. Fahmy and Blostein use a novel approach,

called graph-rewriting, whereby complex syntactic patterns are replaced with simpler ones

until the desired level of detail is derived. Graph grammar systems may not be the best



fit for the present problem, however, since notated music, though two-dimensional on the

page, is essentially a one-dimensional stream. It is never the case that musical objects in

the future will affect objects in the past. This property can be exploited by sorting all the

objects into a one-dimensional list before performing any interpretation. Once sorted, all

necessary operations for interpretation can be performed on the objects quite conveniently.

Any errors in the ordering of symbols, cited as a major difficulty in OMI, in fact tend to

be quite localized and simple to resolve. Therefore, graph grammars are not a part of the

present implementation.

Another approach to OMI is represented by the underlying data structure of a research-

oriented music notation application, Nutator (Diener 1989). Its TTREES (temporal trees)

are object-oriented data structures used to group objects in physical space and time. Each

symbol in a score is composed of a type name, an (x, y) coordinate and a z ordering. Col-

lectively, this object is referred to as a glyph. Glyphs exist in a “two-and-a-half dimensional

space” and thus can be stacked on top of each other. This stacking implicitly defines re-

lationships between glyphs. Glyphs in the foreground communicate with glyphs in the

background in order to determine their semantics. For instance, a note would determine its

pitch by communicating with the staff underneath it and the clef on top of that staff. This

paradigm of communication between glyphs is used heavily throughout the present system.

The advantage of this approach is that glyphs can be edited at run-time and the results of

those changes can be determined very efficiently.

Design criteria

The goals of the present OMI implementation are consistent with those of the underlying

AOMR system. The primary objectives are automatability (batch processing), portability

and extensibility. To meet these goals, the Python programming language (Van Rossum and

Drake 2000) was chosen. Python is an object-oriented, dynamic interpreted language. In

addition, the source code is publicly available. It proved to be an effective tool for meeting

the design requirements:

• Automatability. Python’s simple scripting features make it easy to customize the

workflow for different batch processing needs. In addition, OMI can be completely

driven from the command line and therefore used by other scripting systems.



• Portability. Since all of the input and output formats of OMI are in eXtensible

Markup Language (XML) or ASCII text, the OMI system is portable to any platform

with a Python interpreter.

• Extensibility. Python’s flexible object-oriented paradigm allows for the semantics of

new symbols to be easily added to the system using inheritance. The exact definition

of each symbol can be refined interactively without the need to recompile or even

re-execute the application.

• Freedom. OMI is open-source, as is the Python language.

Logical interpretation vs. performance

The OMI stage does not attempt to apply any performance knowledge to the music, but

instead aims to create an accurate representation of everything on the page. It is possible,

however, to feed the output of OMI to a performance software that would create a more

life-like rendition of the music.

1.3 Overview

This part of the thesis proceeds through the beginning, middle and future of the de-

velopment of an optical music interpretation system. Before beginning development, it was

important to choose the right output format. Therefore, in chapter 2, research into musical

representation languages is presented. Following that is the description of the actual task

of designing and developing an optical music interpreter. Lastly, future directions using the

generated data as the basis for an on-line, musically intelligent search engine are presented.



Chapter 2

Musical representation languages

“If musical information were well understood and fixed, music representation
would be a much simpler problem. In reality, we do not know all there is to
know and the game is constantly changing. For both of these reasons, it is
important that music representations allow extensions to support new concepts
and structures.” —Roger B. Dannenberg (1993, p. 22)

Clearly, the optical music interpretation (OMI) system needs a way to format and

store its output. Unfortunately, one of the long-standing difficulties in the field of music

information retrieval is the lack of a standard representation format for logical musical

data (Selfridge-Field 1997). It has been argued that common music notation (CMN) (Read

1969) is one of the most complex notations in existence (Byrd 1994). Representing the

graphically complex two-dimensional printed score as a one-dimensional string of characters

is such a difficult problem that, in nearly forty years of research, a ubiquitous standard

has not emerged. Therefore, compromise is almost inevitable when selecting a musical

representation language. Add to that the practical issues of application and development

support, and the compromises can be even greater.

When the OMI project began, an in-depth comparison of the two most promising can-

didates, GUIDO (Hoos and Hamel 1997) and MUsical DEscription LAnguage (Mudela)

(Nienhuys and Nieuwenhuizen 1998) was made to assess their suitability to the long-term

archiving of scanned sheet music.



2.1 Resources

The book Beyond MIDI (Selfridge-Field 1997) is an exhaustive survey of musical rep-

resentation languages, (though it predates both GUIDO and Mudela). It also includes

chapters regarding issues (Selfridge-Field 1997b) and guidelines (Halperin 1997) for musical

codes. Dannenberg (1993) provides an fairly exhaustive overview regarding music repre-

sentation. As well, there are at least two good indices of musical codes available on the

internet (Castan 2000, Mounce 2000).

2.2 Background

GUIDO

Holger H. Hoos originally developed GUIDO out of the necessity for a human-readable

music description language for his music analysis package SALIERI (Hoos et al. 1998).

In partnership with Keith A. Hamel, and others, GUIDO was extended to support other

important common music notation features (Hoos and Hamel 1997).

GUIDO is currently defined in two documents: The Basic GUIDO Specification (Hoos

and Hamel 1997) and The Advanced GUIDO Specification (Hoos, correspondence 2000).

The forthcoming Extended GUIDO Specification is expected to cover unconventional music

notation (e.g. microtones, absolute timing).

Mudela

Mudela is more closely tied to the practical considerations of music typesetting. It

originated as the input language to the TEX-based “music compiler” LilyPond, and is now

also the official language of the GNU Music Project. Its original form borrowed heavily from

the Tilia representation used by the Lime music editor (Cottle and Haken 1997; Haken and

Blostein 1993).

Mudela does not have a formal specification, only a preliminary user’s guide (Nienhuys

and Nieuwinhuizen 1998).



2.3 Basic syntax

Detailed information about the GUIDO and Mudela languages are freely available from

their respective authors. This section, therefore, is designed not to introduce the reader to

the languages, but rather to provide enough detail for comparison.

Both GUIDO and Mudela are encoded as text and are therefore human-readable and

portable. While GUIDO syntax is borrowed from many sources, Mudela syntax is inspired

mainly by TEX (Knuth 1984).

GUIDO

The primary advantage of GUIDO’s syntax is its simplicity. It defines only three cate-

gories of atoms: notes and rests, ordering constructs, and tags.

Notes and rests. These simple atoms are used only for the most basic elements of music

notation: notes and rests. They are made up of five parts, all of which except the first are

optional:

c # -1 *3 /4
pitch-name accidental octave numerator denominator

Examples of note and rest atoms:

d1*3/4 d, octave 1, dotted half note
d1/2. d, octave 1, dotted half note
c#-1/8 c], octave -1, eighth note
h/6 b (German h), triplet quarter note
*2 rest (), half note
c2&&/2 c[[, octave 2, half note
cis/4 c] (German c-is), quarter note
fa1## f× (fa in fixed-do with a double-sharp), octave 1
sol&0 g[(sol in fixed-do with a flat)

Ordering constructs. The ordering of atoms places objects sequentially ([...]) or

simultaneously ({ ... }). A minimal GUIDO file must be enclosed in square brackets to

indicate that the notes appear in sequential order.

[c1/4 d e f g a b c2/2] % C major scale

{ c e g } % C major triad



Tags. All other elements and properties that modify notes and rests are indicated using

tag syntax. Since tags begin with an escape-character (the backslash ‘\’), it is always

possible to distinguish tags from normal note elements. Tags have an id (name), zero or

more named arguments (in hairpin brackets ‘< >’) and, optionally, an associated group of

notes (in parentheses ‘()’).

[\repeatBegin c4 d e c \repeatEnd] % Frere Jacques

\clef<"treble"> % Insert a treble clef
[\beam(c8 d e c)] % Double-time Frere Jacques with beams

Mudela

While Mudela syntax is more complex, it should be natural to those familiar with TEX

or LATEX(Lamport and Bibby 1994). Groupings are formed with braces ‘{ }’, and escape

commands are preceded with a backslash ‘\’. Mudela makes extensive use of bracketing:

braces ‘{ }’ for sequencing, hairpin brackets ‘< >’ for simultaneity, parentheses ‘()’ for

slurs and square brackets ‘[]’ for beams. Note that braces are used in two contexts: both

for sequencing and more general grouping of elements.

Anything between white space can be interpreted as an atom. Packages (similar to

modules, libraries or plugins) can be loaded to interpret atoms in new ways. This flexibility

makes the language quite convenient for authors, but very convoluted for programmers who

want to support the language. The language definition, therefore, is a moving target: never

fully defined without actual source code, and somewhat analogous to a natural language

without a dictionary or grammar.

There are four standard ways in which atoms are interpreted: normal mode, note mode,

chord mode and lyric mode.

Normal mode. A mode in which atoms have meaning only as strings. The exact purpose

of this mode is unclear.

Note mode. Each atom represents a pitch name. The keyword used for pitch names can

be changed by loading different language packages. As in GUIDO, redundant information

is omitted by passing along octave and duration values from one note to the next.

d2. cs8 \times 1/6 {hf8} r2 c’ff2 cs4



Chord mode. Chords can be built automatically using notation similar to jazz chord

notation. The root of the major chord is followed by any additional, ommitted or modified

scale degrees. If this notation is insufficient, notes can be combined into chords individually

using parentheses ‘()’.

c1 c:3- c:9-.5+.7+ c:7\^\ 5.3 c/e c:7/e

Lyric mode. Lyric mode views each atom as a syllable of lyrics followed by a durational

value.

\lyrics Oh4 say, can you see2 by8.\ the16

2.4 Extension framework

Both GUIDO and Mudela have well-defined ways to add new features to the language.

GUIDO

GUIDO has an eXtensible Markup Language (XML) inspired approach to extensions:

new features can be added by using new tags, but the underlying lexical syntax cannot

be changed (Bray et al. 2001). This allows legacy or domain-specific programs to ignore

unrecognized or unimportant tags and utilize the remaining information in a GUIDO file.

Since the tag syntax is standardized, it is even possible, in many instances, for an application

to manipulate recognized elements while maintaining their relationship to unrecognized tags.

For example, suppose a GUIDO author invented the tag \editorial to handle editor’s

notes.

[c8 f \editorial<"Handel wrote D-sharp">(ef) f]

Now suppose the author wanted to run the file through a program, transpose, that is unaware

of \editorial tags. It might transpose the file down a semi-tone as follows:

[b7 e8 \editorial<"Handel wrote D-sharp">(d) e]

Note that the original editorial comment remains intact, even though transpose is unaware

of its meaning.



Mudela

Like TEX, Mudela allows the inclusion of macros, or pieces of executable code, to extend

the language. Unlike GUIDO’s tags, macros can add arbitrary tokens to the language, or

even redefine existing ones. In common use are the language packages that change the name

of pitches and keywords. For example, if the Mudela author loads the dutch package, c]

is represented by cis, whereas with the english package it is cs. More complex concepts

such as percussion staves are also implemented as macro packages. Packages are written

in the Mudela language itself, or embedded version of the Scheme programming language

(Abelson et al. 1998), meaning that any extension derived from existing elements can be

used by any program that supports Mudela extensions.

2.5 Human issues

This section deals with GUIDO and Mudela’s suitability for use directly by human-users,

who would both write and read code.

2.5.1 Brevity vs. clarity

Mudela’s syntactic flexibility is exploited to make the language concise and often isomor-

phic (atoms look like the symbols they represent) or mnemonic (atoms have a memorable

association to their meaning). For example, slurs are ‘()’ and accents are ‘->’. While this

makes the language very convenient for authors, it can be opaque for inexperienced readers.

The meaning of GUIDO keywords is more self-evident, at least to English speakers:

If one knows the English term for a musical element, one already knows the associated

GUIDO keyword. This breaks down, however, when keywords are abbreviated. While

some abbreviations, such as \bm, have equivalent full forms (\beam), others do not, e.g.

\stacc (staccato) and \oct (octave). By including both full and shortened versions in the

language definition, the problem of forgetting the correct abbreviations could be eliminated.

2.5.2 Representational adequacy and context-dependence

Both GUIDO and Mudela are based on the concept of representational adequacy. This

means that the bare minimum of information is required to represent scores. For example,



since notes of a given duration tend to be followed by notes of the same duration, when a

duration value is not supplied it defaults to the value of the previous note.

Representational adequacy is a great convenience for authors who are entering scores

manually. It can also, in many cases, improve the readability of the text representations

because the reader does not have to wade through redundant information. However, it ties

the particular representation of phrases to their context (location within the file.) Consider

the following string of GUIDO notes:

d e f g

The appearance of these notes after either c4/8 or c2/4 results in an entirely different

interpretation. This makes copy-and-paste score writing precarious. In Mudela, context

dependence is an even bigger problem because atom interpretation is also dependent on the

current syntax mode.

2.6 Implementation issues

The human considerations and machine considerations are often at odds. This section

examines the issues in writing software that supports these languages.

For example, the context-dependence problems created by the concept of representa-

tional adequacy, a point of potential trouble for human users, is not a problem for computer

programs. The score can be normalized (fully specified) on input and distilled (redundan-

cies removed) on output. The core parser and data structures, therefore, do not need to be

concerned with representational adequacy.

2.6.1 Parsing

GUIDO’s syntactic simplicity makes implementing programs that read it (parsers) less

complex and more robust. Only a handful of atom types need to be recognized. This

simplicity also allows elegant extensibility of the language (Section 2.4) and the handling

of undefined tags.

While macros add a lot of power to Mudela files, particularly for logical abstraction

(Section 2.7), it makes implementation of the language much more difficult. All packages

used by the score must be available on the host machine. It would be difficult to make a



reverse-engineered Mudela parser since the exact semantics of Mudela’s macro language is

undefined outside of the LilyPond source code.

2.7 Logical abstraction

2.7.1 Logical abstraction in text typesetting

Logical abstraction is commonplace in text typesetting. An author may specify the

logical structure of a document, such as chapter or section headings, without specifying any

visual attributes. This aids in two things:

1. Flexible presentation. The document can easily adapt to different formats. For

example, fonts may change if the document is presented in journals, in books, on large

computer displays or small palmtop devices.

2. Expressive searching. If the different parts of the text are marked by logical mean-

ing, automated searches through a large number of documents can be more accurate.

For instance, you may want to search for an author’s name only in the author field of

a number of documents.

Examples of this approach to text formatting appear in the LATEX macro package for TEX

(Lamport and Bibby 1994), and style templates in Microsoft Word (Rubin 1999).

2.7.2 Logical abstraction in music typesetting

Logical abstraction of common music notation is a thornier issue. Byrd’s Ph. D. thesis

argues for the “non-feasibility of fully-automatic high-quality music notation” (1984, 1).

This implies that one cannot leave all issues of visual formatting in the hands of the com-

puter, as is often done in text formatting. For long-term archiving of a large number of

musical scores, however, it would be advantageous to store both the logical information and

the visual formatting together.

In most cases, GUIDO and Mudela already specify music logically, using visual overrides

only when needed. For example, notes are given as pitch names, with facilities to move notes

if the automatic placement is not adequate. In music, the need for having both logical and

visual information is much more acute than with text, since it is much harder to automate

the conversion from a logical representation to a visual one.



2.7.3 Bibliographic information

It would also be desirable to store all bibliographic information related to the score in

the file itself. Mudela has a header group in which one can provide information such as title,

opus number, composer, and editor. An extension of this system is used by the Mutopia

Project (Nienhuys 2001), a database of scores in Mudela format, to automatically generate

web-based catalogs.

The GUIDO specification does not have such a system. It only defines tags for author

and title. However, it would be trivial for one to define more bibliographic tags and publish

their definitions along side the standard GUIDO specifications. These tags could even

be based on an existing bibliographic file standard such as BIBTEX (Patashinik 1988) or

Dublin Core Metadata (Weibel et al. 1998) to provide interchange with existing publishing

and cataloguing systems.

2.8 Software tools

The presence of existing tools can add value to a language, since features that already

exist do not need to be re-written in-house.

2.8.1 GUIDO

Applications

GUIDO NoteServer (Figure 2.1) (Renz and Hoos 1998) displays GUIDO as common

music notation inside a web-browser. The user enters GUIDO into a web-based form, and

an image of that music in common music notation is returned. At the time of this writing,

it supports most of the Basic GUIDO specification. It can be used with any modern web-

browser.

SALIERI is an algorithmic composition and analysis program that uses GUIDO as its

internal data representation.

NoteAbility is a commercial notation program developed by Keith Hamel (1998). Note-

Ability Pro runs on OpenStep and Mac OS-X and allows fully specified Advanced GUIDO

to be imported and exported. The scaled-down NoteAbility Lite runs on Microsoft Win-

dows 95/98/ME and Mac OS 8/9 and can export Advanced GUIDO. Importing is limited

to Basic GUIDO.



Corresponding GUIDO input:

{ [\meter<"4/4"> c d e c c d e c e f g/2 e/4 f g/2
g/8 a g f e/4 c g/8 a g f e/4 c],

[\meter<"4/4"> _*8/4 c/4 d e c c d e c e f g/2 e/4 f g/2]
}

Figure 2.1: Output from GUIDO NoteServer displayed in the Konqueror web browser.



Command-line converters between GUIDO and MIDI (gmn2midi and midi2gmn) also

exist.

Development Tools

The GUIDO Parser Kit is available for free download. The kit has already been used

to implement NoteServer, NoteViewer, and NoteAbility ’s GUIDO import/export abilities.

Almost all of the work of normalizing (i.e. fully-specifying) a file, such as the automatic

inference of bar tags from the meter tag, is implemented as GUIDO-to-GUIDO transfor-

mations in the GUIDO Parser Kit, greatly simplifying the task of reading GUIDO files.

2.8.2 Mudela

Applications

Mudela is the official language of the ambitious GNU Music Project, which aims to

provide a complete suite of open-source music applications including notation typesetting,

sequencing, and optical music recognition.

The only GNU Music Project application that currently exists in usable form is the

music typesetter LilyPond. It is a command-line application that converts Mudela input to

TEX output which can then be printed or viewed on-screen using standard TEX tools. It

currently runs on UNIX and Microsoft Windows, though the Windows version requires large

and complex applications that are not commonly installed (i.e. TEX and Python). Unlike

the other TEX-based music typesetting packages, MusiXTEX (Icking 1997) and OpusTEX,

which are implemented entirely as TEX macros, LilyPond is implemented in a combination

of C++ (Stroustrup 2000), Scheme (Abelson et al. 1998), Python (Van Rossum and Drake

2000), TEX (Knuth 1984) and the Mudela language itself.

There is also an interactive graphical editor for Mudela, Denemo (Figure 2.2), which

is still in the very initial stages of development. Though graphical, the music editing is

entirely QWERTY keyboard-based. The keyboard input deliberately bears some abstract

resemblance to Mudela.

Development Tools

LilyPond ’s source code is documented such that it could be used as the basis for parsing

Mudela. According to the LilyPond internals document (Nienhuys et al. 2000) there are



Figure 2.2: Denemo music editor.

plans for the Mudela parser to be exposed as a library, meaning that third-party developers

could use it in their own projects.

2.9 Conclusion

For an end user typing in the representation directly, Mudela’s concise syntax can be

learned easily. GUIDO’s more verbose syntax can be cumbersome at times. The human

issues of entering the representation manually, however, was not a strong consideration for

the present system.

The availability of software tools is also an important factor. Presently, the freely

available GUIDO tools are not fully functioning, while LilyPond is stable and quickly ap-

proaching the level of professional-quality output. The commercial GUIDO tools have not

been evaluated, but regardless of their design or usefulness, it may be problematic to embark

on an open-source project whose only possible interchange is with a commercial product.

From the point-of-view of an implementor, GUIDO is a much more elegant and practical

language than Mudela. It is clearly defined and its design ensures language stability even

as new extensions are added.

Any decision in this area would be a compromise, but in practice, we have chosen

GUIDO as the primary output language of the system, with a strong impetus to keep the

system as flexible as possible so that new output formats can be added at a later date.



Chapter 3

Implementation of an optical music

interpretation system

This chapter describes the algorithms necessary to perform effective optical music in-

terpretation (OMI).

The execution of the OMI system involves the following steps:

1. Input. The bounding boxes, describing the location of each symbol, are input from

AOMR and converted into OMI’s internal data structure (Section 3.1).

2. Assembly. Glyphs, (the combination of a symbol identity and its location on the

page), that are broken due to faint or damaged printing are reassembled (Section 3.2).

3. Sorting. Each glyph is assigned to a staff and put into temporal order. This new

ordering makes many of the reference assignment algorithms more transparent and

efficient (Section 3.3).

4. Reference assignment. References between glyphs are determined and assigned.

This is the core of the OMI process (Section 3.4).

5. Metric correction. Rhythmic errors in the optical music recognition (OMR) stage

are corrected by examining the metrical context and vertical alignment of glyphs

(Section 3.5).

6. Output. A representation of the score is output (Section 3.6).



7. Interactive debugging. Optionally, the results of the OMI system can be examined

in an interactive debugger. The debugger provides the programmer/user with full

access to the internals of the system (Section 3.7).

Each phase of execution will be discussed in order in the following chapter.

3.1 Input

3.1.1 XML glyph format

The output from the Adaptive Optical Music Recognition (AOMR) system (Fujinaga

1996) is an eXtensible Markup Language (XML) description (Marsh 2001) of the glyphs

identified on the page (Figure 3.1). Each <glyph> entry contains:

• Identifier defining its type (e.g. id="[’notehead.filled’]")

• Bounding box describing its location relative to the page

(e.g. bbox="(1008, 632, 15, 19)")

Other elements output by AOMR but currently unused by OMI include:

• Classification state describing whether the glyph was classified by a general classi-

fier, a heuristic classifier or an end user (e.g. classification state="3")

• Features describing characteristics of the glyph, such as moments, number of holes

and aspect ratio (e.g. <aspect ratio-00 value="0.789473712444"/>)

Though the current implementation of OMI does not use this extended information, it is

hoped that in the future it may help to resolve some ambiguities in scores with recognition

errors.

OMI uses tools included with the Python language (Van Rossum and Drake 2000) to

read the input file.1 As each glyph is input, a Python object is created based on its symbol

identification. For instance, if a symbol was identified as a notehead.filled by AOMR, a

new instance of the notehead filled class will be created2. The advantage of this approach

is that new classes of symbols can be added to the system simply by writing a new Python

class. Therefore, there is no need to explicitly register the new class in a prototype database

(Gamma et al. 1995) in order for the XML parser to create new glyph instances.
1Specifically, these are the bindings to the Expat non-validating XML parser library (Cooper 1999).
2The periods (.) are converted to underscores () since periods can not be used in Python identifiers.



<glyph bbox="(1008, 632, 15, 19)"
classification-state="3"
id="[’notehead.filled’]"
source="Untitled">

<features>
<area-00 value="285.0"/>
<aspect_ratio-00 value="0.789473712444"/>
<moments-00 value="0.312280714512"/>
<moments-01 value="0.26795938611"/>
<moments-02 value="0.0720662251115"/>
<moments-03 value="0.0931687057018"/>
<moments-04 value="0.0197625178844"/>
<moments-05 value="0.0101371835917"/>
<moments-06 value="-0.0069728018716"/>
<moments-07 value="-0.00531475618482"/>
<moments-08 value="-0.0228708032519"/>
<nholes-00 value="0.0"/>
<nholes-01 value="0.0526315793395"/>
<volume-00 value="0.687719285488"/>
<width-00 value="15.0"/>
<height-00 value="19.0"/>
<has_notehead-00 value="0.0"/>

</features>
</glyph>
<glyph bbox="(1636, 1436, 5, 17)"

classification-state="3"
id="[’verticalline’]"
source="Untitled">

<features>
<area-00 value="85.0"/>
<aspect_ratio-00 value="0.29411765933"/>
<moments-00 value="0.36235293746"/>
<moments-01 value="0.357785463333"/>
<moments-02 value="0.0231125578284"/>
<moments-03 value="0.342480778694"/>
<moments-04 value="0.0264799520373"/>
<moments-05 value="0.000463378295535"/>
<moments-06 value="-0.0139860631898"/>
<moments-07 value="-0.00381278875284"/>
<moments-08 value="0.586884319782"/>
<nholes-00 value="0.0"/>
<nholes-01 value="0.0"/>
<volume-00 value="0.776470601559"/>
<width-00 value="5.0"/>
<height-00 value="17.0"/>
<has_notehead-00 value="0.0"/>

</features>
</glyph>

Figure 3.1: Some example glyphs from the XML output produced by AOMR.



3.1.2 Glyph list

Other approaches to OMI have used temporal trees (Diener 1989) or labeled graph-

rewriting systems (Fahmy and Blostein 1993) as the internal data structure (Section 1.2.2).

This system, however, uses only a simple list, sorted in temporal order (Section 3.3). There

is also an index using a Python dictionary (hash table). It maps each class name to a list of

instances of that class. This allows algorithms working on certain classes of glyphs to find

them in the list without traversing the list in its entirety. While these data structures are

quite simplistic, they have proven to be an effective and convenient basis for optical music

interpretation.

3.2 Assembly

The purpose of the assembly phase is to rejoin glyphs that were separated by poor

or eroded printing, or improper binary thresholding (conversion from greyscale to binary)

(Figure 3.2).

Figure 3.2: This score segment has broken lines that are rejoined by the assembly phase.
It has been magnified from its original size.

The algorithm for assembling vertical lines is as follows:

1. For each glyph identified as being part of a vertical line, find the closest glyph that is

also identified as a vertical line.



2. If the distance between the two vertical lines is within a certain threshold, join them

together.

3. Repeat all steps until no more matches are found.

3.3 Sorting

The purpose of the sorting phase is to put the glyphs into the order that they are read

by a musician. This ordering makes many of the algorithms that work upon that data easier

to write and maintain and, at the same time, more efficient.

Sorting the glyphs involves the following steps:

1. Adjusting for multi-page scores (Section 3.3.1)

2. Assigning glyphs to staves (Section 3.3.2)

3. Grouping staves into systems (Section 3.3.3)

4. Grouping staves into parts (Section 3.3.4)

5. Temporal sorting (Section 3.3.5)

3.3.1 Handling multi-page scores

Most scores are made up of multiple pages. One of the difficulties when interpreting

multi-page scores is that contextual information, such as clefs and time signatures, must

carry over from one page to the next. It turns out that the easiest way to deal with this

problem is to treat multi-page scores as one very long page. Each page is input in sequence

and the bounding boxes are adjusted so that each page is placed physically below the

previous one (Figure 3.3). The original page number is saved with each glyph, so that at

the output stage any positional information can be readjusted to be relative to its original

source page. This way, multi-page scores are not a special case—they can be interpreted

exactly as if they were printed on a single page.



pages

−→

page 1

page 2

page 3

Figure 3.3: Multiple page scores are handled by turning the individual pages into one large
page.

3.3.2 Assigning glyphs to staves

In common music notation, events are read from left to right on each staff. Therefore,

before the glyphs can be put into this order, they must first belong to a staff. Each glyph

will have a reference to exactly one staff. This reference is determined in three steps:

1. Each glyph that overlaps a staff is assigned to that staff. If the glyph overlaps multiple

staves, copies are created and each copy is assigned to one of those staves.

2. Each remaining glyph that overlaps one or more assigned glyph(s) uses its staff as-

signment as its own. If it overlaps multiple glyphs that overlap multiple staves, it is

copied, and each copy is assigned to a different staff.

3. Each remaining unassigned glyph is assigned to the closest staff by vertical distance.

This process is applied to a real musical example in Figure 3.4.



Original score

Glyphs assigned after staff assignment step 1

Glyphs assigned after staff assignment step 2

Glyphs assigned after staff assignment step 3

Figure 3.4: The three steps involved in assigning glyphs to staves. Note that the beams
are copied and assigned to both the left- and right-hand piano parts. (Duparc, H. Chanson
Triste.)



3.3.3 Grouping staves into systems

Once glyphs have been assigned to staves, those staves need to be grouped into systems.

Each system is a set of staves that are performed in parallel. The grouping is determined by

examining how they connect: any staves that share the same glyphs are grouped together.

For example, a bracket or brace glyph on the left hand side of the score serves to group

staves together into a system. Any cross-staff beaming, such as in keyboard scores, will also

group staves together (Figure 3.4).

3.3.4 Grouping staves into parts

Once staves are grouped into systems, each staff is assigned to a part. For our purposes,

a part is analogous to the set of staves across all systems that is played by a particular in-

strument, (with the exception of keyboard and harp parts, which have left-hand, right-hand

and sometimes pedal parts on separate staves.) In MIDI terminology, a part is analogous

to a channel.

Presently, the part assignment algorithm is quite simple: Parts are numbered by starting

at the bottom of each system and going upwards. For example, the last staff in each system

will make up one part; the next staff up makes up the next part, and so on. This approach

works quite well on most keyboard-vocal music, where the singer’s staff is sometimes omitted

but the keyboard staves are always at the bottom. It breaks down, however, with more

complex scores, such as full orchestral scores, when staves are removed or combined within

systems to preserve space. Properly interpreting such scores would require reliable optical

character recognition (OCR) of the staff names in the margins.

3.3.5 Temporal sorting

The temporal sort function puts the glyphs in musical order. Glyphs are sorted first

by part, then voice (see Section 3.4.4), and then staff. Next, the glyphs are sorted in

temporal order from left to right. Finally, glyphs that occur at the same vertical position

are sorted top to bottom. This sorted order has some interesting properties that can be

taken advantage of:

• Most inter-related glyphs, such as NOTEHEADs and STEMs, appear very close together

in the list. Finding relationships between these objects requires only a very localized

search.



• staff glyphs serve to mark system breaks.

• part glyphs mark the end of the entire piece for each part.

• This ordering is identical to that used in most musical description languages, including

GUIDO, Mudela and MIDI (MIDI 1986), and therefore output files can be created

with a simple linear traversal of the list.

The sorting itself is performed using Python’s built-in quicksort implementation using

a custom sorting predicate.

3.4 Reference assignment

The purpose of this phase is to build the contextual relationships between glyphs to fully

obtain their musical meaning. This is where the bulk of the OMI processing is performed.

For instance, to fully specify the musical meaning of a notehead, it must be related to a

staff, stem, beam, clef, key signature, and accidentals (Figure 3.5).

Figure 3.5: References to other glyphs (shaded in grey) are required to fully determine the
meaning of a notehead (marked by ×).

Reference assignment proceeds in a number of subphases:

• Pitch. Creates the references needed to determine the pitches of pitched glyphs

(Section 3.4.2)

• Duration. Creates the references needed to determine the durations of durational

glyphs (Section 3.4.3)

• Voice. Splits multi-voiced parts into separate voices based on stem direction (Section

3.4.4)

• Chord. Builds chords within each voice (Section 3.4.5)

• Articulation. Assigns articulations to glyphs (Section 3.4.6)

• Text. Assigns lyrics to notes and constructs and identifies titles and other textual

information (Section 3.4.7)



3.4.1 Class hierarchy

All glyph classes are members of an object-oriented class hierarchy3 in the style pro-

moted in the Eiffel programming language (Meyer 1997) and used throughout the Java

Foundation Classes (Sun Microsystems 1998). In this style, most abstract subclasses can

be described by adjectives describing their capabilities. For instance, all symbols that can

have their duration augmented by dots are subclasses of DOTTABLE. This allows new classes

of glyphs to be added to the present system simply by combining the functionalities of ex-

isting classes. This style of programming is easy and natural in Python. It also means that

reference-assignment algorithms using these classes can be as abstract as possible. This

general design would be much more difficult to implement in more static languages, such

as C++, where run-time type inspection and type modification are possible but much less

convenient. By local convention, abstract classes are in UPPERCASE and concrete classes are

in lowercase. All of the reference assignment operations described below make extensive

use of this class hierarchy.

3.4.2 Pitch

Classes for pitch

OMI has a three-tiered hierarchy of pitch (Figure 3.6). This is an extension of the

more standard binomial pitch representation (Brinkman 1990). Each level adds more detail

and requires more information (i.e. references to more classes of glyphs) in order to be

fully specified. The three different levels are used so that the functionality can be shared

between glyphs that use all three, such as notes, and those that only use a subset, such as

accidentals.

On staff line. The most abstract of the levels of pitch information, ON STAFF LINE, is the

subclass of all glyphs whose vertical placement on the staff is meaningful (e.g. notes, rests,

and accidentals.) Perhaps confusingly, ON STAFF LINE is the parent class of glyphs on both

staff lines and staff spaces. Even numerals are subclasses of ON STAFF LINE so that they

can be combined to form time signatures. In order to determine the staff line placement,

the glyph must have a reference to a staff.
3Meyer (1997) provides a good introduction to the object-oriented programming concepts presented here.



class requires

PITCHED key signature
local accidentals
musica ficta
↑

WPITCHED clef

↑
ON STAFF LINE staff

Figure 3.6: The pitch hierarchy. Each layer adds more detail, but requires references to
more types of glyphs.

White pitched. The next level, WPITCHED, is the subclass of all glyphs that have a white-

key pitch. White key pitch corresponds to a note letter. For example, c and c] have the

same white pitch, but a different twelve-tone pitch. White pitched glyphs include notes and

accidentals. In order to determine white pitch, the glyph must have a reference to a clef.

Pitched. The outer-most level, PITCHED, is the subclass of all glyphs that have a fully

specified pitch. The pitch is determined by the two other layers, (i.e. the vertical placement

on the staff and its white pitch) as well as the key signature and any accidentals or musica

ficta accidentals that may be attached. If no accidentals are present, the pitch is assumed

to be the natural (\) version of its white pitch.

Clefs. Clefs change the way in which the placement of notes on the staff are converted

into pitch. The treble and bass clefs perform this conversion in a direct way. However, the

vertical placement of the c-clef is meaningful to determining the pitches of following notes.

It is therefore a subclass of ON STAFF LINE (Figure 3.7).

Accidentals. Accidentals include sharps, double-sharps, flats, double-flats, and naturals.

They can appear in at least three contexts:

1. As part of a key signature

2. As local accidentals: they affect all notes of the same white pitch to the right of them

in the same measure



Figure 3.7: Different clefs (treble, bass, alto and tenor), and the placement of middle-c.
Note that the alto and tenor clefs, collectively known as c-clefs, are visually identical, but
their meaning is determined by their placement on the staff.

3. As musica ficta accidentals: they appear above the staff and affect the note directly

below them

To prevent accidentals from being interpreted in multiple contexts, each context is

examined in order and those found to be meaningful in that context are marked so they are

not used in proceeding contexts.

Algorithms for pitch

There are a number of algorithms that create the references necessary to determine

pitch:

• Ledger line counting and adjustment. Count ledger lines above and below notes

outside of the staff

• Clef assignment. Assigns clefs to white pitched glyphs

• Key signature building and assignment. Builds accidentals into key signatures

and assigns them to pitched glyphs

• Local accidental assignment. Assigns accidentals to pitched glyphs using an ac-

cidental comb

• Musica ficta. Assigns musica ficta accidentals, found above the staff, to pitched

notes

The more interesting ones, ledger line counting, key signatures, and accidentals, are dis-

cussed below.

Ledger line counting and assignment. Determining the correct staff line location

of notes on the staff is relatively easy, since most (though not all) scores have relatively

parallel staff lines. In fact, the staff line of the note can be determined by a simple distance



calculation from the center of the staff. However, notes outside of the staff, which require

the use of ledger lines (short horizontal lines), are often placed very inaccurately in hand-

engraved scores (Figure 3.8).

Figure 3.8: An example of poorly aligned ledger lines. The grey lines are parallel to the
staff lines and were added for emphasis.

The most reliable method to determine the pitches of these notes is to count the number

of ledger lines between the notehead and the staff, as well as determining whether a ledger

line runs through the middle of the notehead. While this approach works most of the time,

sometimes the ledger line glyphs are missed by the AOMR system. In this case, it is possible

to get wildly inaccurate results. Therefore, a check is performed: if the pitch by distance

from the center of the staff is very different from the pitch by ledger line counting, the

average of the two is taken. While this approach is somewhat arbitrary, it has proven to be

very effective in practice.

Key signature. Every PITCHED glyph needs a reference to the key signature most recently

preceding it. This referencing is done part by part, so that transposing scores, where each

part might have different key signatures, are handled correctly. (The actual transposition

of parts is a performance issue and not a notational one, and therefore it is not a part of

OMI.)



The difficulty of this algorithm arises in distinguishing between key signature accidentals

and local accidentals, which are symbolically identical. In general, the rules that define a

key signature are:

• Key signatures can only begin directly following a clef or a barline.

• The individual accidentals in the key signature must follow a rigidly defined order:

• f, c, g, d, a, e, b for sharps

• b, e, a, d, g, c, f for flats

The key signature-finding algorithm itself is implemented as a finite-state automaton

(FSA) (Kelley 1995) with four states (Figure 3.9):4

• Finding clefs or barlines. This state looks for legal places for a key signature to

begin (i.e. a clef or barline). Once arriving at a legal starting place, one can start

building a new key signature by moving to the next state.

• Finding the start of key signatures. In this state, the algorithm is looking for a

legal first accidental to a key signature (i.e. b[or f]). If one is found, the algorithm

proceeds to find more accidentals of the same kind. If anything else is encountered,

the state gives up and returns control to the first state.

• Finding more flats. This state looks for more flats in the required sequence. As

flat glyphs are correctly identified to be part of a key signature, their class is changed

to flat in key sig. This marks them so they will not be used as local accidentals

later on by the local accidental algorithm. If an accidental that does not belong

to the key signature or a durational glyph is encountered, the building of the key

signature stops and the algorithm returns to the first state.

• Finding more sharps. This state is analogous to the finding more flats state.

There are some cases in which there is ambiguity around the last accidental in a key

signature. For example, a piece in F major (key signature containing only a b[) with a

starting note of e[might erroneously be interpreted as a piece in the key of B[major (two

flats). This problem could be dealt with by examining other parts or systems, but that can

be dangerous when there are transposing parts or key signature changes throughout the

piece.
4For an introduction to finite state automata (FSA), see Kelley (1995). The circles represent states.

Different inputs in a stream cause transitions between states (indicated by the arrows). An arrow marked
with a * represents “all other inputs.”



finding
clefs or
barlines

finding
the start of

key signatures

finding
more

sharps

finding
more
flats

clef, barline

*
*

*

*

f-s
harp

b-flat

more sharps
(in correct order)

more flats
(in correct order)

Figure 3.9: The finite-state automaton (FSA) used to locate and build key signatures.

Local accidentals. The purpose of this algorithm is to assign local accidentals (i.e. ac-

cidentals not in key signatures) to notes.

First, the correct white pitch of all accidentals must be determined. As shown by the

ledger line counting problem, glyphs outside of the staff cannot determine their pitch based

on distance from the center of the staff. Therefore, noteheads have to make use of a ledger

line-counting algorithm. However, accidentals do not have ledger lines, and therefore their

pitch must be determined by their proximity to noteheads to the right. For each accidental

outside of the staff, the staff line location is inherited from the closest notehead to the right

of the accidental.

To assign accidentals to pitched glyphs, a linear pass is made through the list with an

accidental comb. The comb is a list of seven elements, one for each possible white pitch

(c-g). When an accidental is encountered, it is placed in the comb at its corresponding

white pitch. When a pitched glyph is encountered, it is referenced to the accidental at the

corresponding white pitch in the comb.

Certain glyphs, such as barlines, system breaks and part breaks clear the effect of

accidentals (since accidentals do not carry from measure to measure.) For convenience, they

are all subclasses of an abstract class, CLEARS ACCS. When these glyphs are encountered,

the comb is emptied, with the exception of accidentals that are being held over by ties.



3.4.3 Duration

Classes for duration

Like pitch, the concept of duration is implemented in multiple layers (Figure 3.10).

class requires

STEMMABLE stem
flag
beam
↑

DOTTABLE dot

↑
DURATIONAL

Figure 3.10: The durational hierarchy. Each layer adds more detail, but requires references
to more types of glyphs.

Durational. The most generic of these layers, DURATIONAL, is the subclass of all glyphs

that have duration. The duration itself is stored as a rational (fractional) number. Rational

numbers are implemented as a class containing a numerator and denominator. Operations

upon Rational objects preserve the full fractional precision. If this were not the case,

rounding error might be introduced when durations that do not divide evenly in a decimal

or binary representation, such as triplets, are used. For example, three quarter-triplets

(represented as 1
6) should always be equal in length to two quarters (represented as 1

4).

3
(

1
6

)
≡ 2

(
1
4

)
Dottable. The next layer, DOTTABLE, is the subclass of all glyphs that can have their

duration lengthened by augmentation dots. Each augmentation dot increases the duration

of the durational by 50% (Section 3.4.3).

Stem. STEM is the subclass of all stems. Stems help to determine the duration of a

notehead based on the shape of the notehead itself and any beams or flags attached to the

stem.



Since stems are symbolically identical to barlines, they can be confused by OMI. Height

alone is not enough information to distinguish between the two, since many stems may be

taller than the staff height, particularly if they are part of a chord. Instead, vertical lines

are dealt with by a process of elimination.

1. Any vertical lines that touch noteheads are assumed to be stems.

2. Any vertical lines remaining that are taller than the height of one staff are assumed

to be barlines.

3. The remaining vertical lines are likely to be vertical parts of other symbols that have

become broken, such as sharps or naturals. They are not currently dealt with.

If the guesses made about stem/barline identity turn out to be wrong, they can often be

corrected later in the metric correction stage (Section 3.5).

Stemmable. STEMMABLE is the subclass of all glyphs that can have a stem attached. This

includes quarter and half note heads.

The direction of the stem is determined based on the horizontal location of the stem.

If the stem is on the right-hand side, the stem direction is assumed to be up. If the stem

is on the left-hand side, the stem direction is down. Stem direction can not be determined

based on the vertical position of the stem because the notehead may be part of a chord, in

which case the notehead intersects the stem somewhere in the middle.

This method has problems with chords containing second (stepwise) intervals, since

some of the noteheads are forced to the other side of the stem (Figure 3.11). Presumably,

the stem direction could be determined by selecting a single notehead and passing its stem

direction attribute to all other noteheads in the chord. However, selecting that notehead

is not straightforward. As shown in Figure 3.11, this would not be simply a matter of

selecting the top or bottom notehead. According to Read (1969), the outside notehead,

beyond which the stem does not vertically extend, should never be on the “wrong” side of

the stem. Therefore, both the top and bottom noteheads are examined. If the stem goes

beyond the notehead, well outside of the chord, that notehead is the inside notehead, and

the opposite notehead, by definition, is the outside notehead. The outside notehead is used

to determine stem direction by the normal method and its stem direction is inherited by all

other noteheads in the chord.



Figure 3.11: Chords containing seconds pose a problem for determining stem direction since
noteheads are pushed to the other side of the stem.

This approach breaks down with some older scores where half note heads are on the

wrong side of the stem. This is rarely a problem, however, since stem direction is only

meaningful to OMI in multi-voiced scores (Section 3.4.4).

Flag. The FLAG class is the subclass of all flags. Each flag attached to a stem divides its

duration by half.

Beam. BEAM is the subclass of all beams. Each beam attached to a stem divides its

duration by half.

BEAM is also the subclass of all glyphs that look like beams, such as multiplerest. That

way, any multiplerests that are in fact beams will be found by the beam algorithm and

attached to stems. Any multiplerests that are not attached to stems, will retain their

meaning as multiple-measure rests.

Algorithms for duration

There are a number of algorithms related to duration:

• Augmentation dots. Assigns dots to durationals

• Stems. Assigns stems to noteheads

• Beams. Assigns beams to stems

• Flags. Assigns flags to stems

• Time signature construction. Builds a time signature out of two numerals

• Time signature assignment. Assigns time signatures to barlines

• Barline construction. Converts two consecutive barlines into a double barline

The more interesting ones are described below:



Augmentation dots. Assigning dots to DOTTABLEs requires some flexibility. In properly

typeset music, dots never appear directly on a staff line, but instead move to the nearest

possible space (Figure 3.12). Therefore, dots are matched to DOTTABLEs by their staff line

value within a range of ±1 of the DOTTABLE’s own staff line value.

Figure 3.12: How placement on the staff and stem direction can affect the placement of the
corresponding augmentation dot.

When a dot is assigned to a DOTTABLE, its class is changed to augmentation dot so

that it is not used later as a staccato articulation (Section 3.4.6).

Stems. Stems are assigned to STEMMABLEs by intersection. The intersection is loosened by

a constant equal to the average stem width, because many stems do not intersect perfectly

with noteheads.

The case where a STEMMABLE has two stems (Figure 3.13) should be logically two separate

notes: one belonging to the upper voice and one belonging to the lower voice. To handle

this, the STEMMABLE (notehead) is copied. One copy gets a reference to the up stem, the

other to the down stem.

Figure 3.13: A notehead with two stems is separated into two notes.

Time signature construction. Time signatures come out of the AOMR system in two

forms: either as one glyph containing both numerals, (e.g. classes 4 4 and 6 8), or as

two separate numerals. The first case is handled directly. For example, class 4 4 (4
4 time

signature) is a subclass of TIME SIG. In the second case however, one must examine the

positions of numerals and combine them.



In common music notation, time signatures are always made up of a numerator and

a denominator: the numerator digits lie between the first and third staff lines, and the

denominator digits lie between the third and fifth staff lines.

This algorithm examines all pairs of numerals. First, numerals that are horizontally

close together are grouped. This takes care of cases where either the numerator or the

denominator is a multi-digit number (e.g. 4
16). Then, any numerals that fall between the

correct staff lines and are aligned are grouped into a special class, constructed time sig.

A constructed time sig can then function as a regular complete time signature.

3.4.4 Voices

This subphase deals with multi-voice scores, where multiple voices appear on one staff.

Multi-voicing is often seen in choral music or compressed orchestral scores.

Voiced class

VOICED is the subclass of all glyphs that exist only in one voice of a multi-voiced staff.

(This should not be confused with the terms voiced and unvoiced in reference to notes vs.

rests.) This includes all notes, and also rests that are not centered vertically on the staff. All

glyphs that are not subclasses of VOICED apply to or exist in both voices of a multi-voiced

staff. This includes things like barlines and accidentals which are not specific to a given

voice.

Voices algorithm

In multi-voiced scores, each part is divided into two voices. Each voice can then be

treated thereafter as a separate part, even though visually it shares a staff with another

voice. This arrangement effectively abstracts out the concept of voices to the part level and

makes any further processing much simpler because multi-voiced and single-voiced staves

do not need to be handled differently (Figure 3.14).

To split the part into voices, all VOICED glyphs are assigned to one of the voices. For notes

this is determined by stem direction, and for rests this is determined by vertical placement.

Non-VOICED glyphs are copied and placed in both voices. In this way, BARLINEs and other

global glyphs will appear in both voices and the voices can be completely independent of

each other.



Figure 3.14: Multi-voiced staves are split into two separate voices.

Determining whether to split a given part is determined automatically. The user does

not need to tell the system that a score is multi-voiced. Each measure is examined indi-

vidually. If it contains two glyphs at the same vertical position that have different stem

directions, that entire measure will be split. Otherwise, everything in the measure is as-

signed to the first voice, regardless of stem direction. This leaves the second voice with an

empty measure. The readjust algorithm in the metric correction phase will fill the second

part with empty duration so that both the measures in both voices will have the same

duration (see Section 3.5.3).

One shortcoming of this approach is that the system does not handle the separation

of parts into more than two voices, as this would require examining more than just stem

direction. Any possible solution would not be trivial. Fortunately, three or more voices on

a staff is quite rare in the Levy collection.

3.4.5 Chords

Chords are defined as groups of notes occurring simultaneously in the same voice. Unlike

voices, the notes are logically one unit, typically played by one performer (Figure 3.15).



Figure 3.15: Some example chords.

Classes for chords

Chordables. CHORDABLE is the subclass of all glyphs that can be combined to create

chords. This includes all noteheads.

Chords. A CHORD instance contains a list of CHORDABLE objects that make up a chord

(i.e. occur simultaneously in the same voice).

Chords algorithm

The algorithm goes through all CHORDABLEs, finding groups of them that are aligned

vertically or intersecting one another. For each group, a new CHORD object is created

containing a list of its respective CHORDABLEs. The CHORDABLES are then be removed from

the main glyph list.

The overall duration of the chord is set to be equal to the duration of the majority of

noteheads in the chord. This corrects some errors where some noteheads are not properly

connected to their stem.

3.4.6 Articulation

An articulation, for the purposes of OMI, is defined as any glyph directly above or below

another glyph that adds additional properties to that note (Figure 3.16). This definition is

somewhat broader than the traditional definition, since it includes things such as hairpin

crescendi.

Classes for articulations

Articulations. ARTICULATION is the subclass of all articulations. This includes glyphs

such as accents, staccato dots, fermati, and dynamic markings.



Figure 3.16: Some example articulations. Note that the fermata and accent apply only to
one note, whereas the hairpin crescendo applies to a range of notes.

Range articulations. ARTIC RANGE inherits from ARTICULATION and is the subclass of

all articulations that cover a range of glyphs. This includes hairpins and slurs.

Articulatables. ARTICABLE is the subclass of all glyphs that can have an articulation

assigned to them. This includes noteheads and rests.

Articulations algorithm

The algorithm steps through each ARTICULATION and finds all ARTICABLES that are

underneath it in the same staff. Each of this ARTICABLES is given a reference to the

ARTICULATION.

3.4.7 Text

The text subphase is currently unimplemented, as there has not been adequate experi-

mentation with a reliable optical character recognition (OCR) system. Recent experiments

using the AOMR system to perform OCR have shown some promise.

In common music notation, text appears in a number of different contexts. For example,

tempo markings, dynamic expressions, performance instructions, fingerings, and lyrics. In

most published music, each of these types of text are usually set in a different typeface

and in a different position on the staff. The exact typeface and placement varies between

publishers and between different types of scores from the same publisher. Determining the

correct context for blocks of text may prove to be a difficult problem.



3.5 Metric correction

3.5.1 Overview

Physical deterioration of the input score can cause errors at the recognition (AOMR)

stage. Missing or erroneous glyphs cause voices to have the wrong number of beats per

measure. These errors can become quite serious, since they are accumulated over time, and

parts will become more and more out of synchronization. Fortunately, many of these errors

can be corrected by exploiting a common feature of typeset music: notes that occur at the

same time are aligned vertically within each system (set of staves) of music (Figure 5)5.

The score is examined, one measure at a time, across all parts simultaneously. Each part

in the measure is classified into correct, short and long based on its metric duration and its

width. The score is assumed to not be multi-metric (i.e. has the same time signature across

all parts). Based on this information, different algorithms are performed on the measure

to correct durations of notes and rests and barline placement. The primary goal of the

correction algorithms is to ensure that the length of the measure across all parts is the same

before moving to the next measure, and to make those corrections in the most intelligent

way possible.

Metric correction works best in scores with many parts, because there is a large amount

of information on which to base the corrections. It is also in multi-part scores where metric

correction is most crucial. However, as will be shown, many of the algorithms can be applied

to improve the accuracy of single-part scores as well.

3.5.2 Classification

Each measure is read in by reading all parts in parallel until the next barline is en-

countered. Next, the parts are classified. Classification helps the metric corrector to decide

which algorithms are applicable. The parts are classified by two separate criteria:

• Duration. The sum of all of the contributing durations in the measure in a given

part

• Width. The spatial width of the measure in a given part on the page

Therefore, duration relates to time, and width relates to space. Within each criteria, the

parts are classified into three categories: correct, short, and long.
5Some items in the Levy Collection are improperly typeset and do not have this property. In this case,

metric correction is likely to generate errors, and is therefore automatically turned off.



• Correct duration is defined to be equal to the time signature. If a time signature is

not present, the duration of the majority of parts is taken as the correct length. If no

majority exists, the part with the longest duration is assumed to be correct. There is

always at least one part with a correct duration that can be used as a yardstick for all

other parts. Among other things, this provides robust handling of pickup measures.

• Correct width is defined to be the width of any part with a good duration. Parts that

have an incorrect duration will have their width determined relative to a part with a

correct duration.

3.5.3 Algorithms for metric correction

Each metric correction algorithm is tried in order, moving on to the next measure

when all parts have the same duration. Therefore, if all parts have the same duration to

begin with, no metric correction algorithms are tried. Table 3.1 lists the metric correction

algorithms and their applicability to different types of incorrect measures.

Algorithm Duration Width
short long short long

Measure of rest. Fixes measures containing only a single
rest.

• •

Whole rest/half rest conversion. Exchanges misread
whole/half rests.

• •

Erroneous dot removal. Removes noise or dust that was
misinterpreted as augmentation dots.

•

Barline to stem. Converts barlines to stems and attempts
to assign them to noteheads.

• •

Splice. Makes up for missed barlines by cutting long mea-
sures into shorter ones.

•

Readjust. Changes durations of individual notes so that
they line up metrically with other glyphs that line up verti-
cally.

• •

Extend. Adds dummy rests to the end of measures so that
the duration of each part is the same.

• • • •

Table 3.1: The metric correction algorithms and their applicability.



The algorithms are described in detail below.

Measure of rest

It is quite common for typesetters to print a single whole rest to indicate an empty

measure regardless of the time signature (Figure 3.17).

Figure 3.17: The duration of whole rests is determined by the time signature.

The measure of rest algorithm deals with measures containing only a single half or

whole rest. This algorithm replaces the rest with a rest equal to the length of the time

signature.

This algorithm does not require a metrically good measure to be available and therefore

works on single-part scores.

Whole rest/half rest conversion

Since whole rests and half rests are visually identical, and their vertical placement on

the staff can often not be determined accurately, AOMR cannot distinguish them. This

algorithm will replace one with the other, but only if it makes sense to do so. The rest is

replaced and then the measure is verified by ensuring that the glyphs following the rest are

at the same metric position as glyphs vertically aligned to them in other parts. If this does

not prove to be correct, the change is undone.



If the rest is the last glyph in the measure, the change is much easier. We only have to

know that the overall duration of the measure is under or over by a half note to know that

the change is legal.

This algorithm does not require a metrically good measure to be available and therefore

works on single-part scores.

Erroneous dot removal

Damaged or degraded scores often have noise that AOMR interprets as dots. This can

cause some durationals to be augmented that shouldn’t be.

This algorithm removes the DURATIONAL’s reference to the dot and then verifies the

change.

This algorithm may seem to be, and in many cases is, redundant with the readjust

algorithm. However there are cases when the erroneous dot removal algorithm results in

a correct solution when readjust fails (Figure 3.18). Also, this algorithm does not require

a metrically good measure to be available and therefore, unlike the readjust algorithm,

works on single-part scores.

Figure 3.18: This illustrates the necessity for the erroneous dot removal algorithm. (a)
The original as read in from OMR. The ledger line on the first note in the left hand part was
misread as an augmentation dot. (b) The result of the rebuild algorithm. Note that the
second chord in the bass part is wrongfully placed at 3

16 . (c) The result of the erroneous
dot removal algorithm. The second chord in the left hand part is rightfully placed at 1

4 .



Barline to stem

Since barlines and stems are both vertical lines, they are considered to be the same

glyph by AOMR. While most of this can be resolved by fairly straightforward methods

(Section 3.4.3), some can still be incorrectly identified by the metric correction phase. If a

stem in the middle of a measure is thought to be a barline, the width of the measure will

be too narrow. Vice versa, if a barline is assumed to be a stem, the measure will be too

long. This algorithm takes care of the former case. The splice algorithm takes care of the

latter.

If the measure is spatially narrow, the algorithm searches for a notehead very close to

the barline. If it finds one, it is likely that the barline is in fact a stem. The class of the

barline is changed to stem and the result is verified (Figure 3.19).

Figure 3.19: The shading represents the areas perceived to be part of the measure. (a)
The original interpretation, in which a stem is read as a barline. The barline to stem
algorithm converts the barline to a stem and results in (b).

Splice

Sometimes barlines are miscategorized as stems, or are missed by AOMR altogether.

This causes the measure being read in to be spatially wider than necessary. The splice

algorithm has two ways of solving the problem (Figure 3.20):

• The first method copies a barline from a metrically good part into the part that seems

to be missing a barline. This change is verified.



• The second method inserts a new barline at the moment where a barline would make a

complete and correct measure. Since this does not require a metrically good measure

to be available, it also works on single-part scores.

Figure 3.20: Splice algorithm. The shading represents the area perceived to be part of the
measure. (a) is the original input with the missing barline. (b) is the result of the splice
algorithm copying the barline from the top part to the bottom part.

Readjust

The readjust algorithm is the most versatile and solves the greatest range of prob-

lems. It examines parts with an incorrect length and attempts to correct the durations of

individual notes based on their alignment with notes in other parts.

It takes advantage of musical typographic convention: notes that occur at the same

metric instance are vertically aligned across all parts in a system. (This is not always the

case, but it occurs often enough that it should work in most situations.) If vertically aligned

notes are not at the same metric moment, there has likely been an error in the AOMR and

corrections should be made. Note that this algorithm does not determine durations from

the relative horizontal spacings of notes. The relative horizontal spacing of notes is often

designed more for visual than metric considerations (Read 1969), and therefore is unreliable.

Readjust works by comparing notes in the incorrect part to notes in all other parts

known to be correct. If a note is found that is visually aligned but not at the same metric

position, the duration of the note preceding it is changed in order to move the misplaced

note into the same metric position as those visually aligned to it (Figure 3.21). If there is

no preceding note, empty space is inserted.

Often a note will be metrically misplaced but there are no notes in any correct parts

that are visually aligned to it that can be used as guideposts. In such a case, the correct



metric placement is determined by measuring the distance between itself and the closest

good notes to either side of it and estimating the metric position (Figure 3.22(b)).

Figure 3.21: The readjust algorithm corrects for missing dots. The length of the eighth
note in the first part is lengthened so the half note now occurs on the correct beat

(
1
4

)
.

Extend

The extend algorithm is intended to be a last resort case. All other, smarter, algorithms

have already been tried and have been unable to bring all parts to a correct measure

length. Extend simply ensures that all parts have the same measure length, even if this

is incorrect and not equal to the time signature. This prevents the errors in this measure

from propagating into future measures. It also does not ensure that vertically aligned notes

will be metrically aligned. Though this is not an ideal solution, it ensures that the worst

case possible are isolated incorrect measures, as opposed to an entirely misaligned score.

First, the longest duration across all parts is found. Empty rests are added to the end

of all metrically shorter parts to bring them up to the duration of the longest.



Figure 3.22: This figure shows two applications of the readjust algorithm in the same
measure. (a) The original interpretation. In (b), the eighth note in the left hand part is
moved between two quarter notes in the right hand part. In (c) the eighth note is shortened
to move the half note into the correct metrical position.

3.6 Output

3.6.1 File formats

As illustrated in Chapter 2, there is no clear standard for symbolic musical representa-

tion. It is therefore necessary for the present system to support different output formats for

different needs. Relying on external converters, as many word processors do, is not ideal,

since many musical representation formats have radically different ordinal structures and

scope. For example, GUIDO files are organized part by part, whereas Type 0 MIDI files

interleave the parts together by absolute time (a temporal stream). To handle this, OMI

uses pluggable back-ends that map from OMI’s internal data structure, a list of glyphs, to

a given output file format. Presently, output to GUIDO (Hoos and Hamel 1997) is imple-

mented, but other musical representation languages such as Lilypond Mudela (Nienhuys and

Nieuwenhuizen 1998) are planned. Standard MIDI file-format (MIDI Manufacturers Asso-

ciation Inc. 1986) is currently supported through a third party tool that converts GUIDO

to MIDI (Martin and Hoos 1997).

3.6.2 Pluggable back-ends

In general, output is generated in two phases. First, the pluggable back-end is given a

chance to reorder the glyph list. This is useful since the ordering of objects differs across

formats. After re-ordering, the output function of each glyph is called. The output functions



are implemented as mixin classes (Bracha and Cook 2000) in the pluggable back-end and

merged into the core glyph classes.

3.6.3 Mixin classes

Mixin classes are incomplete class definitions that add members to a core class. Ex-

ploiting the dynamic nature of Python, the mixin-merging process is performed at run-time.

The matching of the core class to the mixin class is determined by their names (in Python,

their name member). For a concrete example, consider the class definitions in Table 3.2.

The class augmentation procedure will add the GUIDO-specific functions in the extension

class to the core class, since they both have the same name (CLEF). The merging itself is

achieved by adding the extension class to the front of the tuple of base classes (i.e. bases

member) of the core class. This effectivly adds the extension’s members on the core class’

search path. The augmentation is performed on all the classes in a given module, so it is

easy to extend large numbers of classes.

Core class Mixin class
class CLEF(CLEARS ACCS, BASE):

middle line = B
octave = 1
key sig = None
fixed name = "treble"
def repr (self):

etc...
def get wpitch(self, staff line):

etc...
def get octave(self, staff line):

etc...

class CLEF(GUIDO):
def bas guido clef(self):

etc...
def bas guido(self):

etc...

Table 3.2: An example of a core and mixin class.

The primary advantage to this approach is extensibility. When new classes are added

to the core heirarchy, they do not need to be updated in all output extension modules, they

will simply be ignored by the mixin application function.



3.6.4 Demonstration of output

This section demonstrates how a single measure from a score in the Levy Collection is

converted into a number of different formats by the AOMR/OMI system.

Original image

The original image (Figure 3.23) was scanned at 300 DPI, 8-bit grayscale. Note that

there is a fair amount of noise due to age of the score.

Figure 3.23: The original image.

PostScript output

The PostScript output (Figure 3.24) is an exact one-to-one copy of the recognized sym-

bols on the page, recreated using PostScript primitives and the Adobe Sonata font. This

phase is analogous to the XML-based glyph list that forms the bridge between AOMR and

OMI. It was used during the development of AOMR to debug the primitive recognition

system.



Figure 3.24: The PostScript output.

GUIDO output

Figure 3.25 is the logical interpretation of the score in GUIDO format. Note that the

format is human readable and fairly intuitive. Since this is a musical representation, the

physical layout of the original score is not stored.

Re-rendered notation

Figure 3.26 shows output of OMI re-rendered using the GUIDO NoteServer. The exact

positions of the notes are determined solely from the logical representation of the score and

thus are different from the original.

3.7 Interactive self-debugger

Allowing the user to interact with the data of a running program is one of Python’s

greatest assets, and greatly reduces the length of the develop-test cycle (Lutz 1996). How-

ever, interacting with graphical data, such as that in OMI, is quite cumbersome using only

text-based tools. For example, selecting two-dimensional coordinates with a mouse is much

easier than entering them numerically. For this reason, a graphical, interactive debugger was

implemented that allows the programmer to examine the data structures of a running OMI



% GUIDO Music Notation format.
% Automatically generated from a scanned image.
{ [\beamsOff \clef<"treble"> \key<0>

b1*1/4. b1*1/8 a1*1/8 g1*1/8 f#1*1/8 g1*1/8
],
[\beamsOff \clef<"treble"> \key<0>

_*1/8 \beam({ b0*1/8 , d1*1/8 , g1*1/8 }
{ b0*1/8 , d1*1/8 , g1*1/8 }
{ b0*1/8 , d1*1/8 , g1*1/8 })

_*1/8 \beam({ b0*1/8 , d1*1/8 , g1*1/8 }
{ b0*1/8 , d1*1/8 , g1*1/8 }
{ b0*1/8 , d#1*1/8 , g1*1/8 })

],
[\beamsOff \clef<"bass"> \key<0>

{ g-1*1/4 , g0*1/4 } _*1/4
{ g-1*1/4 , g0*1/4 } _*1/4

]
}

Figure 3.25: The GUIDO output.

Figure 3.26: The output from GUIDO NoteServer.



session and execute arbitrary Python code upon it. This is analogous to running Python in

interactive mode, except that it offers a graphical way of interacting with positional data.

3.7.1 Overview

The overall debugging system is divided between an image viewer and the OMI de-

bugging interface. Besides providing the basic functionality of scaling and displaying the

image, the viewer can colorize or draw rectangles on arbitrary parts of the image. Secondly,

a simple GUI allows the user to display or modify the logical data in different ways. To

support the coloring of objects, each glyph has a color function that colors itself in the

viewier. In addition, the repr function (normally used in Python to print an object to

standard out) of each glyph serves to both (a) return a text dump of all its pertinent data

members in a human readable form and (b) call its color function so it will be highlighted

in the viewer.

3.7.2 Pages

The interactive self-debugger uses a notebook interface to divide the functionality into

different categories. These pages are described below.

Attribute page

Each button on the attribute page (Figure 3.27) colors the score based on different

criteria. For example, the wpitch (white pitch) button will color each notehead based on

its note name (i.e. all a’s will be red, all b’s will be yellow, etc.) Coloring is an efficient way

for the developer to debug an algorithm and ensure that it is producing the correct results.

Class browser page

The class browser page (Figure 3.28) displays a list of all classes in the glyph class

hierarchy. Clicking on an entry highlights all glyphs of that class in the viewer. This helps

the debugger ensure that glyphs were properly identified during the AOMR stage and were

properly disambiguated by OMI.



Figure 3.27: The attribute page of the interactive debugger.

Figure 3.28: The classes page of the interactive debugger.



Glyph info page

Clicking on a glyph in the viewer displays all of its data members on the glyph info page

(Figure 3.29). The text displayed on the glyph info page is taken directly from the output

of the glyph’s repr function. These details can help debug why certain algorithms were

failing for certain glyphs.

Figure 3.29: The glyph info page of the interactive debugger.

List browser page

The list browser page (Figure 3.30) displays a list of all glyphs in the score in their

temporal order. This page helps to debug the sorting algorithms (Section 3.3), as well as

any algorithms that rely on the relative position of glyphs within the glyph list. Clicking

on an entry in the list highlights that glyph in the viewer.

Python console page

The Python page provides a console with an interactive Python session. Useful vari-

ables are defined in local scope, such as the glyph list, so that the developer can directly



Figure 3.30: The list browser page in the interactive debugger.

manipulate the data and see the results immediately. Printing out a glyph object (i.e. by

typing the variable name and pressing [Enter]) displays its data members in the console

and colorizes it in the viewer.

Melody page

The melody page provides a prototype of a musical search engine. The user may type

in a search query and the results are highlighted in the image viewer. Melodic searching is

a large topic that has also been the subject of research in the Levy project (Chapter 4).

Rhythm page

The rhythm page provides a basic rhythmic search engine. The user may search for a

rhythm by tapping it on the mouse. All instances of that rhythm on the score are highlighted

in the image viewer. Since the root of the rhythm can not be determined by mouse clicking

alone, all equivalent rhythms are highlighted. For instance, two eighth notes followed by a

quarter note is equivalent to two quarter notes followed by a half note.



MIDI page

The MIDI page automatically converts the GUIDO output to MIDI using the third-

party gmn2midi program and plays it over the computer’s sound hardware.

3.7.3 Reflections on the interactive self-debugger

The interactive self-debugger has proven to be an invaluable tool for developing the

OMI application. While extra development effort was expended to create it, those hours

were easily made up by the ease with which it allowed the programmer to examine the

state of the data structures. The combination of Python with one of the convenient GUI

development tools, in this case Python-Gnome (Henstridge 2000), makes developing such

in-house tools relatively easy work, and certainly should be a recommended development

practice.

3.8 Conclusion

The present system handles many of the inherent difficulties of optical music interpreta-

tion in an elegant and simple way. This elegance is in no small part due to its implementation

in Python, which facilitated achieving the three main design criteria: automatability, porta-

bility, and extensibility. Due to its solid foundation in a flexible object-oriented language,

any future changes should remain relatively simple to implement, keeping development time

to a minimum. Ultimately, the hope is that other large sheet music digitization projects will

use this system because it presents a flexible and extensible alternative to closed systems.



Chapter 4

Symbolic music information

retrieval

4.1 Introduction

This chapter describes a system for music searching that is expressive enough to perform

both simple and sophisticated searches that meet a broad range of user needs. It is also

efficient enough to search through a large corpus in a reasonable amount of time. The music

search system was created by extending an existing advanced natural language search engine

with simple filters and user-interface elements.

First, the search engine will be related other musical search engines already available for

use on the web. Then, the capabilities of the non-music-specific core of the search engine

will be described, followed by the extensions necessary to adapt it to music.

4.2 Other search engines

None of the available musical search engines we evaluated met the needs of the diverse

user base of the collection, or could handle the large quantity of data in the complete Levy

collection. In particular, we evaluated two projects in detail: Themefinder (Kornstädt 1998)

and MELDEX (McNab et al. 1997).



4.2.1 Themefinder

Themefinder’s goal is to retrieve works by their important themes. These themes are

manually determined ahead of time and placed in an incipit database.

One can query the database using five different kinds of search queries: pitch, interval,

scale degree, gross contour, and refined contour. These five categories served as the inspira-

tion for a subset of the basic query types in the present system. The user can query within

an arbitrary subset of these categories and then intersect the results. However, Themefinder

does not allow the user to combine these query types within a single query in arbitrary ways.

For instance, a user may know the beginning of a melodic phrase, while the ending is more

uncertain. Therefore, the user may want to specify exact intervals at the beginning and

use gross contours or wild-cards at the end. Unfortunately, in Themefinder, the user must

have the same level of certainty about all of the notes in the query. This is perhaps not

consistent with how one remembers melodies (McNab et al. 2000).

In addition, Themefinder does not have a notion of rhythmic searching. While its

invariance to rhythm can be an asset, it can also be cumbersome when it provides too many

irrelevant matches. Figure 4.1 shows the results of a query where one result is more relevant

than the other. Such queries may return fewer false matches if they could include rhythmic

information.

The searches themselves are executed in Themefinder using a brute-force method. The

entire database is linearly searched for the given search query string. While this is acceptable

for the 18,000 incipits in Themefinder’s largest database, it may not scale well for searching

across a full-text database such as the Levy collection.

Beethoven, Ludwig Van. Quartet in E Minor, Op. 59, No. 2 “Rasoumowsky”, 4th Movement.

Beethoven, Ludwig Van. Sonata No. 4, in A Minor, Op. 23, Violin and Pianoforte, 1st Movement.

Figure 4.1: These two incipits start with the identical set of pitches, [c d e d], but with
different rhythmic content. With better rhythmic specificity, irrelevant results could be
eliminated. (http://www.themefinder.org/)



4.2.2 MELDEX

The simple text-based query strings in Themefinder are easy to learn and use by those

with moderate musical training. MELDEX, however, has a more natural interface for non-

musicians. The user sings a melody using a syllable with a strong attack such as “tah.” The

pitches of the melody are determined using pitch-tracking, and the rhythm is quantized.

The results are used as the search query. The query is approximately matched to melodies

in the database using a fast-matching algorithm related to dynamic programming. While

this approach is highly effective for non-musicians and simple queries, it is limiting to those

wanting more fine-grained control.

4.3 Capabilities

The present musical search engine supports both melodic and rhythmic searches. Search

queries can also include the notion of simultanaeity. That is, events can be constrained to

occur at the same time as other events. The search engine, as described here, is limited

to standard-practice Western music, though modifications could be made to support other

musical traditions.

4.3.1 Extensibility

Other types of musical searching beyond these core capabilities require additional layers

of musical knowledge to be built on top of the search engine. The general design of the

search engine encourages such extensibility. Any analytical data that can be derived from

the score data can be generated offline (ahead of time) and later used as search criteria. This

data can be generated by new custom tools or existing analysis tools such as the Humdrum

toolkit (Huron 1999).

For example, the search engine could be extended to support harmonic searches with

respect to harmonic function. Western tonal harmonic theory is ambiguous, making it

difficult to objectively interpret and label harmonies. This is a largely unsolved problem

that is not the subject of this research. However, assuming an acceptable solution to these

issues could be found, labeling of harmonic function could be implemented as an input filter.

Also, the core search engine does not include any notion of melodic similarity. This

is an open problem strongly tied to subjective matters of human perception (Hewlett and



Selfridge-Field 1998). It is possible for a specialized front-end to include notions of melodic

similarity by generating specialized search queries. The search query language of the core

search engine is expressive enough that these advanced features could be added without

modifying the core itself.

4.3.2 Meeting diverse user requirements

The user of this musical search engine can be anyone who wants to access the collection

in a musical way. Of course, the needs of different users are greatly varied. A non-musician

may want to hum into a microphone to retrieve a particular melody. A copyright lawyer may

want to track the origins of a particular melody, even melodies that are merely similar. A

musicologist may want to determine the frequency of particular melodic or rhythmic events.

To meet these diverse needs, it is necessary to provide different interfaces for different users.

The set of interfaces is arbitrary and can be extended as new types of users are identified.

It may include graphical applications, web-based forms and applets, or text-based query

languages. Audio interfaces, with pitch- and rhythm-tracking may also be included. The

purpose of these interfaces is to translate a set of user-friendly commands or interactions

into a query string accepted by the search engine. The details of that query can be hidden

from the end-user and therefore can be arbitrarily complex.

At present, attention has been focused on the core search engine itself. In the second

phase of the search engine project, the user interfaces will be developed in collaboration

with a usability specialist.

4.4 The core search engine

The core search engine in this system was originally developed for text-based retrieval

of scores based on their metadata and full-text lyrics. Its overall design was inspired by

recent developments in the field of natural-language searching (DiLauro et al. 2001). These

features allow the user to perform search queries using the embedded context in natural

languages, such as parts of speech, rhyming scheme, and scansion. While not originally

intended for musical searching, it was soon discovered that the core was very well suited for

searching through symbolic musical data.

The core itself did not need to be modified to support music searching. Instead, spe-

cialized filters and front-ends were added to adapt it to the music domain. In the ingestion



stage, the data is filtered to store it in the appropriate indices and partitions (see Section

4.5). When searching, special user interfaces handle the details of generating search query

strings and filtering and displaying the resulting data. Figure 4.2 shows how the individual

parts of the system fit together to ingest and query the data.

Images

Symbolic Music
(GUIDO)

OMR

Filtering /
Conversion

Primary Index
Secondary

Indices
...

CORE SEARCH ENGINE

INGESTIONQUERY

User Interfaces

Query
generation

Display

Filter

Partitions

Figure 4.2: Workflow diagram of the musical search engine.

4.4.1 Inverted lists

Many search engines, including this one, are built on the concept of an inverted list.

For a complete discussion of inverted list search engines, see Witten et al. (1999).

Sequential data, such as English prose or melodic data, is stored on disk as a sequence

of atoms. In the case of English, the atom is the word and the sequence is simply the

ordered words as they appear in sentences and paragraphs. Take for example the following

sentence:



To be , or not to be , that is the question .

Note that both words and punctuation are treated as indivisible atoms. To search for

a particular atom in this string, a computer program would need to examine all thirteen

atoms and compare it with a query atom. To increase searching efficiency, an inverted list

search engine would store this string internally as:

, −→ {3, 8}
. −→ {13}
be −→ {2, 7}
is −→ {10}
not −→ {5}
or −→ {4}
question −→ {12}
that −→ {9}
the −→ {11}
to −→ {1, 6}

Here, each atom in the string is stored with a list of numbers indicating the atom’s

ordinal location within the string. The set of words in the index is called the vocabulary of

the index. To search for a particular atom using the index, the program needs only to find

that word in the vocabulary and it can easily obtain a list of indices (or pointers) to where

that atom is located within the string. Since the vocabulary can be sorted, the lookup can

be made faster using hashing or a binary search.

Inverted lists perform extremely well when the size of the vocabulary is small relative

to the size of the corpus. In the case of English, of course, the vocabulary is much smaller

relative to the size of all the works written in that language. This property also allows us

to improve the efficiency of musical searching as we will see below.

4.5 The musical search engine

The musical search capabilities are supported by three main features of the core search

engine:

1. Secondary indices allow the amount of specificity to vary with each token.



2. Partitions allow search queries to be performed upon specific discontiguous parts of

the corpus.

3. Regular expressions allow advanced pattern matching.

4.5.1 Secondary indices

Figure 4.3: A measure of music, from the Levy collection, used as an example throughout
this section. (Guion, D. W., arr. 1930. “Home on the range.” New York: G. Schirmer.)

In the case of music, the searchable atom is not the word, but the musical event. Events

include anything that occurs in the score, such as notes, rests, clefs, and barlines. Each of

these events, of course, can have many properties associated with it. For instance, the note

b[at the beginning of the fragment in Figure 4.3 has the following properties:

• Pitch name: b

• Accidental: [

• Octave: -1 (first octave below middle-c)

• Twelve-tone pitch: 10 (10th semitone above c)

• Base-40 pitch: 37 (see Hewlett 1992)

• Duration: eighth note

• Interval to next note: perfect 4th

• Contour (direction) to next note: up

• Lyric syllable: “sel–”

• Metric position: Beat 1 in a 6
8 measure

All of these properties are self-evident, with the exception of base-40 pitch, which is

a numeric pitch representation where the intervals are invariant under transposition while

maintaining their enharmonic spelling (Hewlett 1992). Note also, we use GUIDO-style

octave numbers, where the octave containing middle-c is zero, as opposed to ISO-standard

octave numbers.



The concept of secondary indices allows the individual properties of each atom to be

indexed independently of any other properties. This allows search queries to have arbitrary

levels of specificity in each event. The set of properties can be extended to include any

kinds of data that can be extracted from the musical source. For example, if the harmonic

function of chords could be determined unambiguously, a secondary index containing chord

names in Roman numeral notation could be added. In this design, secondary indices are

used to handle the properties of events that change from note to note. Continuous properties

of events, that are carried from one event to the next, such as clefs, time signatures, and

key signatures, are handled using partitions, explained below (see Section 4.5.2).

Ingestion of secondary indices

During the ingestion phase, the source GUIDO data is first converted to an interim

format where all of each event’s properties are fully specified. For example, the GUIDO

representation of Figure 4.3 is as follows:

[\clef<"treble"> \key<-3> \time<6/8>
\lyric<"sel-"> b&-1*/8.
\lyric<"dom"> e&*0
\lyric<"is"> f
\lyric<"heard"> g/4
\lyric<"A"> e&/16
\lyric<"dis-"> d

]

Each event is then extended so it is fully specified. In this format, each note event is a

tuple of properties:

pitch-name, accidental, octave, twelve-tone-pitch, base-40-pitch, duration, inter-
val, contour, scale-degree, lyric-syllable, metric-position

Figure 4.4 shows the example in fully-specified symbolic representation.

Each one of these fields is used to index the database in a particular secondary corpus.

For example, if the notes in the example were labeled 1 through 6, the data in the secondary

indices may look something like:

• Pitch name

a −→ ∅



[\clef<"treble"> \key<-3> \time<6/8>
b, &, -1, 10, -3, 1/8, P4, /, so, "sel-", 0
e, &, 0, 3, 14, 1/8, M2, /, do, "dom", 1/8
f, n, 0, 5, 20, 1/8, M2, /, re, "is", 1/4
g, n, 0, 7, 25, 1/4, M3, \, mi, "heard", 3/8
e, &, 0, 3, 15, 1/16, m2, \, do, "A", 5/8
d, n, 0, 2, 9, 1/16, M2, \, ti, "dis-", 11/16

]

Figure 4.4: Fully specified symbolic representation of the example in Figure 4.3.

b −→ {1}
c −→ ∅
d −→ {6}
e −→ {2, 5}
f −→ {3}
g −→ {4}

• Accidentals

n (\) −→ {3, 4, 6}
& ([) −→ {1, 2, 5}

• Octave

-1 (octave below middle-c) −→ {1}
0 (octave above middle-c) −→ {2, 3, 4, 5, 6}

• Duration

1/4 (quarter note) −→ {4}
1/8 (eighth note) −→ {1, 2, 3}
1/16 (sixteenth note) −→ {5, 6}

Searching using secondary indices

The search query itself is simply a series of events. Each event can be indicated as

specifically or as generally as the end user (as represented by a user interface) desires. For

example, the following query would match any melodic fragment that begins on a b[eighth

note, has a sequence of 3 ascending notes, ending on a g:

b,&,1/8 / / / g



To execute a search query using secondary indices, the search engine looks up each

parameter in their corresponding secondary indices, and retrieves tokens in the secondary

index. These tokens are then looked up in the primary index, returning a list of positions.

These lists are intersected to find the common elements. This list of locations is then filtered

to include only those events that are sequenced according to the search query.

Supported user interfaces

This design supports a broad range of user interfaces. A text-based user interface

may allow a user to be very specific in the query, and then incrementally remove layers of

specificity until the desired match is retrieved. An audio-based user interface could be more

or less specific depending on the pitch-tracker’s confidence in each event.

Efficiency of secondary indices

One of the efficiency problems with this approach is that the vocabularies of the in-

dividual secondary indices tend to be quite small, and thus the index lists for each atom

are very large. For instance, the “pitch name” secondary index has only seven atoms in its

vocabulary (a - g). “Accidentals” is even smaller: {[[, [, \,], ×}. Therefore, a search for

a b[must intersect two very large lists: the list of all b’s and the list of all flats. However,

the search engine can combine these secondary indices in any desired combination off-line.

For example, given the “pitch name” and “accidental” indices, the search engine can auto-

matically generate a hybrid index in which the vocabulary is all possible combinations of

pitch names and accidentals. The secondary indices can be automatically combined in all

possible combinations, to an arbitrary order.

4.5.2 Partitions

Partitioning can be used to restrict a search query to a particular part of the cor-

pus. Each partition is a description of how to divide the corpus into discontiguous, non-

overlapping regions. More specifically, each partition is a file containing a list of regions.

Each region within a partition is named and has a list of its start and stop positions.

In this music search engine, the metadata is used to partition the corpus into regions.

For example, all works by a given composer would make up a discontiguous region in the



“composer” partition. Partitions exist for all types of metadata in the collection, including

date, publisher, geographical location, etc.

In addition, we have extended partitioning to include musical elements derived directly

from the GUIDO data. Regions are generated from key signatures, clefs, time signatures,

measures, movements, repeats, etc. This allows for searching for a particular melody in a

particular key and clef, for example.

Ingestion of partition data

When a new work is added to the corpus, the data is partitioned automatically. First,

the metadata regions, such as title, composer, and date, are set to include the entire piece.

As the piece is scanned, continuous musical elements, such as clef, key signature, and time

signature, are regioned on-the-fly. Therefore, when the ingestion filter sees a “treble clef”

token, all further events are added to the “treble clef” region until another clef token is

encountered. Lastly, events are added to the moment regions on an event-by-event basis.

For the example in Figure 4.3, again assuming the notes are numbered 1 through 6, the

partitions may look something like:

• Title partition

“Home on the range” −→ [1, 6]

• Clef partition

Treble clef −→ [1, 6]

• Time signature partition
6
8 −→ [1, 6]

Searching using partitions

Extending the example in Section 4.5.1, the user may wish to limit the search to the

key signature of E[-major :

(b,&,1/8 / / / g) @ key:"E& major"

Here the non-partitioned search query is performed as described above, and then the

results are intersected with the results of the partition lookup. Since in this case, the entire

range of notes [1, 6] is in the key signature of E[-major, the query will retrieve the example

in Figure 4.3.



Searching with simultaneity using partitions

Scores are also partitioned at the most atomic level by “moments.” A moment is defined

as a point in time when any event begins or ends in any part. Moments almost always

contain multiple events, and events can belong to multiple moments (e.g. when a half note

is carried over two quarter notes in another part). Each moment within a score is given a

unique numeric identifier, and all events active at a given point are included in a moment

region. In this way, one can search for simultaneous polyphonic events very efficiently.

To explain this further, Figure 4.5 shows the example measure with its assigned moment

numbers. Each event is assigned to one or more moments so that it can be determined which,

if any, of the events are active at the same time. These moment numbers are used to create

regions. For example, the dotted half note in the left hand of the piano part would be

assigned to all seven moment regions.

Figure 4.5: The example measure of music showing moment numbers.

To perform searches involving simultanaeity, the query for each part is performed sepa-

rately, and then the results are intersected based on their moments. Only the query results

that occur at the same time (existing in the same moment regions) will be presented to the

user.



4.5.3 Regular expressions

The core search engine supports a full complement of POSIX-compliant regular expres-

sions. Regular expressions, a large topic beyond the scope of this paper, are primarily used

for pattern-matching within a search string (Friedl 1997). The Humdrum toolkit (Huron

1999) has proven the usefulness of regular expressions for musicological research.

Many users find regular expressions difficult and cumbersome ways to express searches.

The intent is that most of these details will be hidden from the user by appropriate interfaces.

For example, regular expressions would be very useful for an interface that allowed searching

by melodic similarity. What is important to our present research is that regular expressions

are supported in the core search engine, leaving such possibilities open.

4.6 Conclusion

Based on existing advanced natural-language search techniques, an expressive and effi-

cient musical search engine has been developed. Its special capabilities include: secondary

indices for gradiated specificity, partitions for selective scope and simultanaeity, and regular

expressions for expressive pattern matching. This allows users with different search needs

to access the database in powerful and efficient ways.



References

Abelson, H., R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams IV, D. P. Friedman, E.
Kohlbecker, G. L. Steele Jr., D. H. Bartley, R. Halstead, D. Oxley, G. J. Sussman, G.
Brooks, C. Hanson, K.M. Pitman and M. Wand. 1998. Revised report on the algorithmic
language Scheme. Higher-order and symbolic computation 11(1): 7–105.

Aha, D. W. 1997. Lazy learning. Artificial Intelligence Review 11(1): 7–10.

Bainbridge, D. 1997. Extensible optical music recognition. Ph. D. thesis, University of
Canterbury.

Baumann, S. 1995. A simplified attributed graph grammar for high-level music recognition.
In Proceedings, International Conference on Document Analysis and Recognition 1080–3.

Bracha, G., and W. Cook. 1990. Mixin-based inheritance. In Proceedings, 8th Conference on
Object-Oriented Programming, Systems, Languages, and Applications / European
Conference on Object-Oriented Programming (OOPSLA/ECOOP), ACM SIGPLAN
Notices 25(10): 303–11.

Bray, T., M. Paoli, C. M. Sperberg-McQueen, E. Maler. 2000. Extensible Markup Language
(XML) 1.0 (Second Edition). W3C. http://www.w3.org/TR/

Brinkman, A. R. 1990. Pascal programming for music research. University of Chicago Press.

Byrd, D. 1984. Music notation by computer. Ph. D. thesis, Indiana University.

Byrd, D. 1994. Music notation software and intelligence. Computer Music Journal 18(1):
17–20.

Castan, G. 2000. Common music notation and computers. World wide web.
http://www.s-line.de/homepages/gerd castan/compmus/index e.html

Choudhury, G. S., C. Requardt, I. Fujinaga, T. DiLauro, E. W. Brown, J. W. Warner, and
B. Harrington. 2000. Digital workflow management: The Lester S. Levy digitized
collection of sheet music. First Monday 5(6).

Choudhury, G. S., T. DiLauro, M. Droettboom, I. Fujinaga, and K. MacMillan. 2001. Strike
up the score: Deriving searchable and playable digital formats from sheet music. D-Lib
Magazine 7(2).

Cooper, C. 1999. Using Expat. XML magazine 9/99.



Cormen, T. H., C. E. Leiserson and R. L. Rivest. 1997. Introduction to algorithms.
Cambridge, MA: MIT Press.

Cost, S., and S. Salzberg. 1992. A weighted nearest neighbor algorithm for learning with
symbolic features. Machine Learning 10: 57–78.

Cottle D., and L. Haken. 1997. The LIME Tilia representation. In E. Selfridge-Field, ed.,
Beyond MIDI: The handbook of musical codes. Cambridge, MA: MIT Press.

Couasnon, B., and J. Camillerapp. 1994. Using grammars to segment and recognize music
scores. In Proceedings, International Association for Pattern Recognition Workshop on
Document Analysis Systems 15–27.

Cover, T., and P. Hart. 1967. Nearest neighbour pattern classification. IEEE Transactions
on Information Theory 13(1): 21–7.

Dannenberg, R. 1993. Music representation issues, techniques and systems. Computer Music
Journal 17(3): 20–30.

Diener, G. 1989. TTREES: A tool for the compositional environment. Computer Music
Journal 13(2): 77–85.

DiLauro, T., G. S. Choudhury, M. Patton, J. W. Warner, and E. W. Brown. 2001.
Automated name authority control and enhanced searching in the Levy collection. D-Lib
Magazine 7(4).

Fahmy, H., and D. Blostein. 1993. A graph grammar programming style for recognition of
music notation. Machine Vision and Applications 6(2): 83–99.

Free Software Foundation, Inc. 1991. GNU general public license.
http://www.gnu.org/licenses/gpl.html

Friedl, J. E. F. 1997. Mastering regular expressions. Sebastopol, CA: O’Reilly.

Fujinaga, I. 1996. Adaptive optical music recognition. Ph. D. thesis, McGill University.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design patterns: Elements of
reusable object-oriented software. New York: Addison-Wesley.

Gerou, T., and L. Lusk. 1996. Essential dictionary of music notation. Los Angeles: Alfred.

Haken, L. and D. Blostein. 1993. The Tilia music representation: Extensibility, abstraction,
and notation contexts for the LIME music editor. Computer Music Journal 17(3): 43–58.

Halperin, D. 1997. Afterword: Guidelines for new codes. In E. Selfridge-Field, ed., Beyond
MIDI: The handbook of musical codes. Cambridge, MA: MIT Press.

Hamel, K. 1998. NoteAbility: A comprehensive music notation editor. In Proceedings,
International Computer Music Conference 506–9.

Henstridge, J. 2000. Python-Gnome. Computer Program (UNIX).
http://www.theoenlab.uml.edu/pygtools/.



Hewlett, W. B. 1992. A base-40 number-line representation of musical pitch notation.
Musikometrika 4: 1–14.

Hewlett, W. B., and E. Selfridge-Field. 1998. Melodic similarity: Concepts, procedures and
applications. Cambridge, MA: MIT Press.

Holland, J. H. 1975. Adaptation in natural and artificial systems. Ann Arbor: University of
Michigan Press.

Hoos, H. H., and K. Hamel. 1997. GUIDO music notation Version 1.0: Specification Part I,
Basic GUIDO. Technical Report TI 20/97, Technische Universitat Darmstadt.
http://www.informatik.tu-darmstadt.de/AFS/GUIDO/docu/spec1.htm.

Hoos, H. H., J. Kilian, K. Renz, and T. Helbich. 1998. The SALIERI project. In
Proceedings, International Computer Music Conference 385–92.

Huron, D., and E. Selfridge-Field. 1994. Research notes (the J. S. Bach Brandenburg
Concertos). Software.

Huron, D. 1999. Music research using Humdrum: A user’s guide. Menlo Park, CA: Center
for Computer Assisted Research in the Humanities.

Icking, W. 1997. MuTEX, MusicTEX, and MusiXTEX. In E. Selfridge-Field, Beyond MIDI:
The handbook of musical codes. Cambridge MA: MIT Press.

Kelley, D. 1995. Automata and formal languages: An introduction. Englewood Cliffs, NJ:
Prentice Hall.

Kornstädt, A. 1998. Themefinder: A web-based melodic search tool. Computing in
Musicology 11: 231–6.

Knuth, D. 1984. The TEXbook. Reading, MA: Addison Wesley.

Lamport, L., and D. Bibby. 1994. LATEX: A document preparation system: User’s guide and
reference manual. Reading, MA: Addison Wesley.

Lutz, M. 1996. Programming Python. Sebastopol, California: O’Reilly.

McNab, R. J., L. A. Smith, D. Bainbridge, and I. H. Witten. 1997. The New Zealand Digital
Library MELody inDEX. D-Lib Magazine: 3(5).

MacMillan, K., M. Droettboom and I. Fujinaga. 2001. Gamera: A structured document
recognition application development environment. In Proceedings, International
Symposium on Music Information Retrieval 15–6.

Martin, L., and H. H. Hoos. 1997. gmn2midi, version 1.0. Computer Program (Microsoft
Windows, Apple Macintosh OS, IBM OS/2, UNIX).
http://www.informatik.tu-darmstadt.de/AFS/GUIDO/.

Mentalix Inc. 2000. Pixel/FX! 2000. Computer Program (UNIX).
http://www.mentalix.com/.

Meyer, B. 1997. Object-oriented software construction. 2nd ed. New York: Prentice-Hall.



MIDI Manufacturers Association Inc. 1986. The complete MIDI 1.0 specification.
http://www.midi.org.

Mounce, S. 2000. Music encoding standards.
http://www.student.brad.ac.uk/srmounce/encoding.html

Musitek. 2000. MIDISCAN. Computer Program (Microsoft Windows).
http://www.musitek.com/.

Neuratron. 2000. Photoscore. Computer Program (Microsoft Windows, Apple Macintosh
OS). http://www.neuratron.com/photoscore.htm.

Nienhuys, H., and J. Nieuwenhuizen. 1998. LilyPond user documentation (containing
Mudela language description). GNU Project. http://www.gnu.org/.

Nienhuys, H., J. Nieuwenhuizen, and A. Mariano. 2000. LilyPond internals.
http://www.cs.uu.nl/people/hanwen/lilypond/

Nienhuys, H. 2001. The Mutopia Project. http://www.mutopiaproject.org.

Patashnik, O. 1998. BIBTEX ing. Included with BIBTEX computer software.

Read, G. 1969. Music notation: A manual of modern practice. New York: Taplinger.

Renz, K., and H. H. Hoos. 1998. A web-based approach to music notation using GUIDO. In
Proceedings, International Computer Music Conference 455–8.

Van Rossum, G., and F. L. Drake. 2000. Python tutorial. Campbell, CA: iUniverse.

Rubin, C. 1999. Running Microsoft Word 2000. Redmond, WA: Microsoft Press.

Schulenberg, J. 2000. gocr. Computer Program (Microsoft Windows, UNIX).

Selfridge-Field, E. 1993. The MuseData universe: A system of musical information.
Computing in Musicology 9: 11–30.

Selfridge-Field, E. 1997. Beyond MIDI: The handbook of musical codes. Cambridge, MA:
MIT Press.

Selfridge-Field, E. 1997b. Beyond codes: Issues in musical representation. In E.
Selfridge-Field, ed., Beyond MIDI: The Handbook of Musical Codes. Cambridge, MA:
MIT Press.

Smith, L. A., and R. J. McNab. 1996. Melody transcription for interactive applications.
Technical report, University of Waikoto, Hamilton, NZ. 96(32).

Smith, L. A., R. J. McNab, and I. H. Witten. 1998. Sequence-based melodic comparision: A
dynamic-programming approach. Melodic Similarity: Concepts, Procedures and
Applications, edited by W. B. Hewlett and E. Selfridge-Field. Computing in Musicology :
11.

Stroustrup, B. 1997. The C++ programming language (Special edition). Reading, MA:
Addison Wesley.

Sun Microsystems 1998. Java Foundation Classes. http://java.sun.com/products/jfc/.



Weibel, S., J. Kunze, C. Lagoze, and M. Wolf. 1998. Dublin core metadata for resource
discovery. IETF #2413. The Internet society September, 1998.

Wettschereck, D., D. W. Aha, and T. Mohri. 1997. A review of empirical evalutation of
feature weighting methods for a class of lazy learning applications. Artificial Intelligence
Review 11: 272–314.

Witten, I., A. Moffat, and T. Bell. 1999. Managing gigabytes. 2nd ed. San Francisco:
Morgan Kaufmann.



Part II

Tempo extraction



Chapter 5

RUBATO: A system for

determining tempo fluctuation in

recorded music

5.1 Introduction

In a 1981 episode of That’s Incredible, Dr. Arthur B. Lintgen demonstrated his unusual

gift for identifying recordings of classical music simply by examining the groove patterns on

phonograph records (Figure 5.1). While his accuracy within the standard classical repertoire

is reported to be close to 100%, he has difficulty distinguishing between two performances

of the same work (Holland 1981). This is not due to a lack of skill, but to the nature of

a phonograph’s grooves. To the naked eye, the grooves give an overview of the recorded

sound, (i.e. a particular work of music) while the fine-grained details (i.e. the performance

differences) are hidden.

Lintgen’s ability inspired Jonathan Foote to design the ARTHUR system for automatic

identification of recorded music (Foote 2000). ARTHUR simulates the visual appearance

of a phonograph by smoothing a digital audio signal to such an extent that only its rough

contours remain. The resulting “fingerprint” can be matched against pre-labeled prototypes

to identify the composition. The matching itself is performed using the dynamic program-

ming algorithm (DPA) (Section 5.3.2) that can handle variations in tempo and amplitude.



Figure 5.1: Dr. Arthur B. Lintgen was able to identify recordings of classical music simply
by examining the groove patterns on phonograph records (Holland 1981).

The DPA determines both how closely two recordings match, and, more importantly, the

moments along their duration where the music coincides.

The RUBATO (Rubber-banded Automatic Tempo Obtaining) system presented here

builds on Foote’s work. While ARTHUR was designed specifically for identification of

musical works, RUBATO extracts a tempo and rubato curve for time-based performance

analysis. Since the system is still in active development, this is a report of a work in progress,

outlining the system’s successes and shortcomings. Potential research applications of the

technology are also discussed.

5.2 A brief history of musical time

Tempo has an unusual place in Western music. Unlike pitch or rhythm, tempo is usually

only suggested by the composer.

“Tempo indication is not a creation, but an afterthought related to performance.
Naturally an inherently fast piece must be played fast, a slow one slow—but to
just what extent is a decision for players.” —Rorem (1983)

Fluctuation in tempo, or rubato, is expected and encouraged, whether or not it is indicated

in the score. In fact, music without any rubato is perceived as mechanical and unnatural

(Todd 1989). The tempo and rubato of a performance are, therefore, usually a committee



decision between the composer, the performer, and the too oft-forgotten force of common

practice and experience. It is perhaps because tempo is not strictly documented in the

score, that it has historically received relatively little attention from musicologists (Bowen

1996).

With the advent of recordings, musicologists now have access to a resource for analysis

that contains tempo information in a very concrete form. However, the researcher must

exercise caution when using recordings as documents of authentic performance practice.

No less a composer than Igor Stravinsky noted:

“The disadvantages [of recordings], are that one performance represents only one
set of circumstances, and that mistakes and misunderstandings are cemented in
tradition quickly and canonically as truths.”

—Stravinsky (1971) as quoted in Buxbaum (1988)

In addition, the creation of, listening to, and distribution of recordings has a direct effect

on performance practice, and therefore, cyclically on recordings themselves (Katz 1999).

With these pitfalls in mind, recordings can still be a valuable resource. Unlike a live

performance, recordings allow for repeated identical listenings and the precise gathering of

data for analysis and comparison (Bowen 1996).

5.2.1 Current research

Much of the research that involves extracting tempi from recordings (see Bowen, 1999)

falls into three broad categories. Some papers attempt to provide practical guidelines to

performers. Others use comparisons of recordings to highlight external social forces and

historical trends in performance practice. The last group attempts to distill the human

processes involved in the selection of tempo and rubato in order to mimic it by automatic

means.

As an example of performance recommendations, Buxbaum (1988) compares the scores,

recordings, and comments of Stravinsky. Unfortunately, the only conclusion made is that

all of these factors must be taken into account. The “correct” tempi of Stravinsky likely do

not exist.

Bowen (1996) and Katz (1999) use the tempo data from recordings to discover trends in

performance practice. One of the most interesting observations is that “conductors from the

first half of this century use more tempo fluctuation in more diverse ways than conductors



from the second half of the century” (Bowen 1996). This is perhaps an example of what

Katz calls a “phonograph effect”: frequent tempo fluctuation does not wear well with the

repeatibility of recordings, and thus has been less common in recent years.

The last category of research aims to build a workable model of tempo and rubato

practice. Todd (1989) is an early attempt to use extracted performance data and perceptual

studies to develop an algorithm for tempo and rubato. Feldman et al. (1992) show that

Todd’s approach was partially unsuccessful because it assumed that tempo change was a

linear phenomenon. They go on to demonstrate that a natural-sounding rubato curve is

at least a third-degree polynomial. Another factor in the generation of natural-sounding

timing is the relationship between tempo and rubato. As global tempo increases, what

happens to the rubato microstructure? Desain and Honing (1994a) and Repp (1994) have

participated in a long debate on this matter. Both groups agree that a relationship between

tempo and rubato exists and that it is very complex. There are many factors involved,

including rhythmic density and pitch. Early studies that analyzed recordings by themselves

were not conclusive, since the performer’s comfort level at different tempi would affect the

amount of rubato they were able to play. Later studies that involved perceptual testing of

the relative “naturalness” of different amounts of rubato were more successful (Repp 1995).

Both groups of researchers have yet to find a practical model of the relationship. One of

the obstacles to their research is the relatively data-poor environment. It is very expensive

to analyse many recordings en masse using manual data-acquisition methods.

5.2.2 Tempo extraction

Manual methods

“The most time-consuming step in the process of collecting information about
performance is to measure the duration between each beat, convert this number
into a tempo measurement, and then store this series of numbers in a database.”

—Bowen (1993)

Epstein (1985) and Katz (1999) describe using a stopwatch to time the length of each beat

or measure. The time of each event is repeatedly resampled, and the average is taken to

reduce the amount of human error. Bowen (1996) used custom computer software which

recorded taps on the keyboard while the music was played. While more convenient than

the stop watch method, it is prone to the same kinds of human error. Feldman et al. (1992)

have a more accurate, if more time-consuming approach:



“The beats were measured by first transferring the recordings to 7.5 ips [inches
per second] open-reel tape. The attack points were then marked on the tape
using a conventional editing technique, in which the tape is run back and forth
over the playback head by hand at very slow speed until the attack point can
be identified exactly. The distances between the attack points were measured
to the nearest millimeter, resulting in a final resolution of about 5 msec.”

—Feldman et al. (1992)

This 5 millisecond resolution is well below the threshold of perceptible simultaneity (Levitin

and Mathews 2001).

The RUBATO system represents a major improvement over these manual tempo ex-

traction techniques. While it currently does not achieve the same resolution (Section 5.3.1),

it is much less prone to manual error, and more importantly, much less time-consuming.

On a typical notebook computer1, for example, a tempo curve for a ten-minute piece can be

obtained in five seconds. With the large quantity of recordings already available in digital

form on compact discs and on the Internet, large data sets can be generated very quickly.

Automatic methods

RUBATO’s technique is also markedly different from existing computer-based tempo-

tracking systems. Most systems either work directly from MIDI events or use beat-induction

or pitch-tracking techniques.

MIDI (Musical Instrument Digital Interface) events are simply instructions generated

by an electronic instrument, typically a keyboard (MIDI 1986). For example, a MIDI

instruction may represent the event: “press this key down at beat 4, using 50% pressure (or

velocity), and hold for 2 beats.” The data from MIDI events is therefore very specific and

accurate, and has proved useful for a number of tempo experiments (Desain and Honing

1994a). However, it is limited in scope since a musician must perform directly on a MIDI

instrument. Until automatic transcription is perfected, it is impossible to generate MIDI

events from an existing recording. Also, MIDI is only sufficiently representative for modeling

keyboard performances. The expressive range of other instruments and the voice are not

adequately represented by the small set of MIDI events.

Beat-induction has many variations and is by far the most common form of tempo-

tracking. In general, it locates the strong beats of each measure by finding peaks in am-
1Intel Pentium III 700 MHz with 128MB RAM, running Linux 2.4.



plitude (Desain and Honing 1994b). Unfortunately, the music being tracked “must have a

regular pulse, corresponding to a regular time signature” (Driesse 1991). This requirement,

of course, makes it difficult to use in the study of rubato.

Pitch-tracking matches a recording against a list of expected pitches (Smith and McNab

1996). Unfortunately, such an approach is dependent on the key of the performance, and

is often undermined when a performer adds or misses notes. Pitch-tracking is also not very

robust at handling complex multi-pitched textures.

In contrast, RUBATO’s main strength lies in the fact that it is not searching for beats. It

is merely matching one recording to another. It is more successful than the other approaches

because it already has an approximate idea of what to look for. However, RUBATO’s tempo

matching can not be performed in real-time. It needs to scan the recordings in their entirety

before it can begin to match them (Section 5.3.2). It is therefore unsuited to applications

such as score-following or automatic accompaniment (Allen and Dannenberg 1990).

5.3 The RUBATO program

The following is an overview of the important algorithms in the program. Throughout,

two recordings of Fugue No. 1 from J. S. Bach’s Well-Tempered Clavier, BWV 846, are used

as an example. One recording is performed by Glenn Gould (1963). The other is a strict

MIDI rendering created directly from the score using the step-recording and quantization

functions found in most MIDI sequencers. The reason for using a strict MIDI rendering is

explained in Section 5.3.3.

RUBATO accepts digital audio data as input, such as that on a digital audio compact

disc. The analysis data is output as both numeric values and graph plots.

5.3.1 Smoothing the audio signal

CD-quality digital audio signals are recorded at 44,100 samples per second. A visual

representation of such waveforms is shown in Figures 5.2 and 5.3. Note that the two wave-

forms have some superficial resemblance in their overall contours, despite being radically

different performances.

This raw digital data contains a lot of detail. Of course, when comparing two recordings

of the same work by different performers, much of that detail should be ignored. Therefore,

the data is reduced by taking the mean of the absolute values within some relatively long



window of time. The optimal window size depends on the overall textural complexity of

the music. The goal is that the window should be as small as possible, but not so small

that it includes too many timbral and performance details. Experiments show that window

sizes of roughly one second produce consistently good results. The drawback of having such

a long window, however, is that the resolution of the matching information can only be

accurate within that window size. Using overlapping windows can increase the resolution,

but overlapping more than two or three times re-introduces too much detail. Figure 5.3

shows how the overlapping windows line up with the original digital waveform.

Figure 5.2: Audio waveform of the first ten seconds of the strict MIDI rendering of Fugue
No. 1 from J. S. Bach’s Well-Tempered Clavier, BWV 846.

Figure 5.3: Audio waveform of the first ten seconds of Gould’s 1963 recording of the fugue.
The brackets at the bottom show the overlapping windows in which the means are gathered.

Once a mean has been extracted from each window, these values are smoothed to

increase the continuity of the individual values. Figure 5.4 shows the derived means with

their corresponding fitted curves. It is these curves, or the gross contours, of the recording

that are used as input to the dynamic programming algorithm.

5.3.2 Dynamic programming algorithm

The dynamic programming algorithm (DPA) is a popular general-purpose algorithm in

computer science, first developed by R. Bellman (Bellman 1957; Cormen et al. 1997). In



Figure 5.4: The gross contours of two recordings.

general, it is used to match strings of data that differ only in small variations of insertion,

deletion, or repetition. It has been used in many applications that must match two streams

of data with similar characteristics, such as natural language translation (Gale et al. 1992)

and melodic similarity (Smith et al. 1998).

In the case of the RUBATO system, the DPA is used to find all the moments where

the two recordings match. More specifically, it must find a contiguous path through all

the possible matching points such that the sum of the differences at each point along that

path is minimized. In order to do this, a difference table is created. It is filled with the

absolute difference between the slopes of the two recordings at every possible combination.

For example, Table 5.1 is the difference table for the Bach fugue (showing only the first ten

windows, for simplicity). The slopes of the MIDI rendering are on the x -axis, and the slopes

of the Gould recording are on the y-axis. The rest of the table is filled with the absolute

differences between the slopes at each point. Given recordings X and Y, there are three

choices at each cell of the table:

• move right: progress only in recording X.

• move down: progress only in recording Y.

• move diagonally southeast: progress in both recordings.



MIDI (X)

-60.4 6.41 -5.89 5.33 6.11 6.02 -6.44 5.05 -6.61

-2.63 • 3.41 9.04 3.26 7.96 8.74 8.65 3.81 7.68 3.98
-4.04 • 2.00 10.40 1.85 9.37 10.20 10.10 2.40 9.09 2.57

G 3.78 9.82 • 2.63 9.67 1.55 2.33 2.24 10.20 1.27 10.40
o -5.17 0.87 11.60 • 0.72 10.50 11.30 11.20 1.27 10.20 1.44
u 6.11 12.20 0.30 12.00 • 0.78 0.00 0.09 12.6 1.06 12.7
l 5.15 11.20 1.26 11.00 • 0.18 0.96 0.87 11.6 0.10 11.80
d 2.08 8.12 4.33 7.97 3.25 • 4.03 3.94 8.52 2.97 8.69

(Y) 4.86 10.90 1.55 10.80 0.47 1.25 • 1.16 11.30 0.19 11.50
-5.15 0.89 11.60 0.74 10.50 11.30 11.20 • 1.29 • 10.20 • 1.46

Table 5.1: The difference table searched by the dynamic programming algorithm. The strict
MIDI rendering is on the x -axis and the Gould recording is on the y-axis. The bullets (•)
indicate the path of best match between the two recordings.

The move with the smallest global cost is chosen at each stage. The cost of each move is

defined as the difference between the two slope values at a given point. The DPA does not

select a move based only on the minimum absolute difference in the next element, since

each move affects all subsequent moves. Instead, at each step of the path, the algorithm

recursively determines the global cost of each move. This is somewhat analogous to a game

of chess. The expert player considers all possible outcomes of each move up to many steps

ahead, not just the moves in the immediate future. In this way, the DPA can find the

optimal match among all possible matches between the recordings. The optimal match

path in the fugue example is indicated by the bullets (•) in Table 5.1. The match path for

the entire piece is plotted in Figure 5.5.

5.3.3 Extracting tempo curves

The concept of the tempo curve is controversial. Desain and Honing (1991), prolific

researchers in the field of tempo-tracking and analysis, believe the tempo curve

“. . . is a dangerous notion, despite its widespread use and comfortable descrip-
tion, because it gives the users the false impression that a continuous concept
of temporal flow has an independent existence—a musical or a psychological
reality, and that time can be perceived independent of the events carrying it.”

—Desain and Honing (1991)

It is necessary, therefore, to be aware that the tempo curve is merely an abstraction. More

specifically, a tempo curve is, for better or worse, independent of the structural details



Figure 5.5: The match-path of the fugue. The strict MIDI rendering is on the x -axis and
the Gould recording is on the y-axis. The line represents where the two recordings match.



to which musical tempo is inherently linked. These structural details include chord asyn-

chronicity, ornamentation, appogiatura, and phrase length. Despite the abstract nature of

tempo curves, Mazzola and Zahorka (1994) prove the utility of tempo curves for analysis

and re-creation of performances, especially by computers.

The tempo curve that RUBATO extracts is inherently relative; it is based on where two

recordings match, and it is impossible to distinguish between a ritardando in one recording

and an accelerando in another. If the tempo of one of the recordings is known, however, we

have a fixed point of reference for determining the absolute tempo values. One of the easiest

ways to generate a recording with a strict known tempo is to use a MIDI sequencer/synthesis

system. Since RUBATO is invariant to detail, the poor realism of most MIDI synthesizers

does not affect the accuracy of the result. For example, choral textures are usually produced

very inaccurately by MIDI sampling synthesizers, often using only a single vowel tone for

all notes. However, this timbral difference is unimportant to the RUBATO system. In

fact, it has worked successfully on works where the MIDI rendering has very little timbral

resemblance to the original (Section 5.3.4). Creating the MIDI performance turns out

to be the most time-consuming step in the process. However, some strict-tempo MIDI

renderings of classical music are freely available on the world wide web (Nienhuys 2001).

Forthcoming optical music recognition technology promises to automate the creation of

MIDI performances directly from printed scores (Part I).

The tempo curve is derived from the match-path created by the DPA. It is, essentially,

the slopes (the first derivative) of the match-path. Since the tempo of the rendered MIDI

file is known, the result can be scaled to a concrete unit, such as beats per minute. The

resulting graph is identical in definition to what Bowen (1993) calls a “Tempo Map.” The

x -axis displays the measure, while the y-axis displays the tempo for each measure in beats

per minute (bpm).

The tempo curve of the Gould fugue recording is shown in Figure 5.6. The sharp peaks

at either end are caused by the fact that continuous tempo is impossible to determine at

the extreme beginning and end of the recording. Refinements to the extrapolation process

should improve this.

At present, the resolution of the tempo curve is bounded by the window size. This makes

it easy to derive coarse tempo curves, but finer-grained rubati generally get smoothed out.

This makes it unsuitable for research into what Desain and Honing (1991) call “micro-

tempo”, or what Repp (1994) calls “expressive microstructure” (i.e. timing deviation on a



Figure 5.6: The tempo curve of Gould’s 1963 recording of the Bach fugue.



note-to-note basis). Possible ways to increase the resolution include performing fine-grained

dynamic programming within each window, or adding a second stage of beat-induction.

5.3.4 More examples

Two Gould Goldbergs

The RUBATO system is not limited to the comparison of only one recording and one

MIDI rendering. In fact, any number of recordings can be cross-compared. As an example,

Figure 5.7 shows the tempo curves from Gould’s 1955 and 1982 recordings of J. S. Bach’s

Goldberg Variations BWV 988 (first sixteen measures). You can see that the 1955 recording

is faster than the 1982 since the average bpm is higher, but it also has more tempo variation.

The earlier version also has a prominent ritardando around measure 14.

Figure 5.7: Tempo curves of Gould’s 1955 and 1982 recordings of J. S. Bach’s Goldberg
Variations BWV 988 (first sixteen measures).



Complex orchestral timbres

The “In Paradisum” movement of G. Fauré’s Requiem was chosen as a challenge for

the system. Three recordings spanning three decades directed by Cluytens (1963), Yamada

(1974), and Shaw (1987) were compared. There were two expected difficulties with the

piece. First, it contains strings and chorus, which are reproduced very unrealistically on

most MIDI synthesisers. Second, it has a very smooth gross amplitude contour, which gives

the DPA fewer pronounced guide-posts to work with. However, the matching and tempo

extraction of this work was very successful, proving the robustness of RUBATO’s approach

(Figure 5.8).

Figure 5.8: Tempo curves of three recordings of the “In Paradisum” movement of G. Fauré’s
Requiem: Cluytens (1963), Yamada (1974) and Shaw (1987).

Interpreting the results, one can see that all three recordings follow roughly the same

tempo curve. These similarities are due to the marked ritardandi in the score. But it is

interesting to note how the Cluytens has a divergent swelling of tempo around measure

38. Though it is impossible to draw conclusions from such a small sample, it is at least

consistent with Bowen’s hypothesis (1996) that tempo variation has decreased in recent

years.



5.4 Conclusion

Research into tempo is important for the understanding and historical documentation

of performance practice. However, current methods for extracting tempo data directly from

recordings are cumbersome. They either include too much human error or are overly time-

consuming. The RUBATO system aims to solve this problem by providing an efficient

tool with which a researcher can generate large amounts of data. While its resolution

is currently inadequate for many tempo-based research projects, further refinements and

possible hybridization with other tempo-tracking techniques show promise.



References

Allen, P. E., and R. Dannenberg 1990. Tracking musical beats in real-time. In Proceedings,
International Computer Music Conference 140–3.

Bellman, R. 1957. Dynamic Programming. Princeton, NJ: Princeton University Press.

Bowen, J. 1993. A computer-aided study of conducting. Computing in Musicology 9: 93–103.

Bowen, J. 1996. Tempo, duration, and flexibility: Techniques in the analysis of performance.
Journal of Musicological Research 16: 111–56.

Bowen, J. 1999. A bibliography of performance analysis.
http://www.georgetown.edu/departments/AMT/music/bowen/perfbiblio.html

Buxbaum, E. 1988. Stravinsky, Tempo and Le Sacre. Performance Practice Review. 1:
66–88.

Cluytens, A. 1963. G. Fauré: Requiem. Compact Disc. EMI 5 66946.

Cormen, T., C. E. Leiserson, and R. L. Rivest. 1997. Introduction to Algorithms.
Cambridge, MA: MIT Press.

Desain, P., and H. Honing. 1991. Tempo curves considered harmful: A critical review of the
representation of timing in computer music. In Proceedings, International Computer
Music Conference 143–9.

Desain, P. and H. Honing. 1994a. Does expressive timing in music performance scale
proportionally with tempo? Psychological Research. 564: 285–92.

Desain, P. and H. Honing. 1994b. Foot-tapping: a brief introduction to beat induction. In
Proceedings, International Computer Music Conference, 78–101.

Driesse, A. 1991. Real-time tempo-tracking using rules to analyse rhythmic qualities. In
International Computer Music Conference, 578–81.

Epstein, D. 1985. Tempo relations: A cross-cultural study. Music Theory Spectrum 7: 34–71.

Feldman, J., D. Epstein, and W. Richards. 1992. Force dynamics of tempo change in music.
Music Perception 102: 185–204.

Foote, J. 2000. ARTHUR: Retrieving Orchestral Music by Long-Term Structure. In
Proceedings, International Symposium on Music Information Retrieval.



Gale, W., K. Church, and D. Yarowsky. 1992. Using bilingual materials to develop word
sense disambiguation methods. In Proceedings, International Conference on Theoretical
and Methodological Issues in Machine Translation 101–12.

Gould, G. 1955. J. S. Bach: The Goldberg Variations. Compact Disc. CBS, MYK 38479.

Gould, G. 1963. J. S. Bach: The Well-Tempered Clavier. Compact Disc. Sony Classical,
SM2K 52 600.

Gould, G. 1983. J. S. Bach: The Goldberg Variations. Compact Disc. CBS Masterworks,
MK 37779.

Holland, B. 1981. A man who sees what others hear. New York Times, Nov. 19, 1981.

Katz, M. 1999. The phonograph effect: The influence of recording on listener, performer,
composer. Ph.D. diss., University of Michigan.

Levitin, D. J., and Mathews, M. V. 200. The perception of cross-modal simultaneity.
Technical Report. McGill University.

Mazzola, G. and O. Zahorka. 1994. Tempo curves revisited: Hierarchies of performance
fields. Computer Music Journal, 181: 40–52.

MIDI Manufacturers’ Association. 1986. MIDI Specification, Version 1.0. La Habra, CA:
MIDI Manufacturers’ Association.

Nienhuys, H. 2001. The Mutopia Project. http://www.mutopiaproject.org.

Repp, B. H. 1994. Relational invariance of expressive microstructure across global tempo
changes in music performance: An exploratory study. Psychological Research 564: 269–84.

Repp, B. H. 1995. Quantitative effects of global tempo on expressive timing in music
performance: Some perceptual evidence. Music Perception 13: 39–58.

Rorem, N. 1983. The later diaries of Ned Rorem 1961–1972. San Francisco, CA: North
Point Press.

Shaw, R. 1987. G. Fauré: Requiem. Compact Disc. Telarc, CD-80135.

Smith, L. A., R. J. McNab, and I. H. Witten 1998. Sequence-based melodic comparision: A
dynamic-programming approach. In Melodic Similarity: Concepts, Procedures and
Applications, edited by W. B. Hewlett and E. Selfridge-Field. Computing in Musicology :
11.

Smith, L. A., and R. J. McNab. 1996. Melody transcription for interactive applications.
Technical report, University of Waikoto, Hamilton, NZ. 96(32).

Todd, N. 1989. A computational model of rubato. Contemporary Music Review 3: 69–88.

Yamada, K. 1974. G. Fauré: Requiem. Compact Disc. CBS Masterworks, MK 44738.



Part III

Realtime digital signal processing

environment



Chapter 6

RED: Realtime Environment for

Digital Signal Processing

6.1 Introduction

RED is a language-based programming environment for realtime digital signal process-

ing. The system is general enough that the signals being processed may be any form of

data, including audio, MIDI and video signals. The algorithms upon these diverse forms of

data intercommunicate using a flexible message passing system. This allows the user of the

environment to create custom domain-specific applications that include audio filtering and

synthesis, and video processing and tracking.

To use RED, one writes programs that build “patches” (signal processing graphs) con-

necting unit generators (UGs) together. UGs are software modules that filter or produce

digital signals. Max V. Mathews originally introduced them in the Music III language devel-

oped at Bell Telephone Laboratories in 1960 (Roads 1999). This same conceptual model is

used in a number of popular signal processing environments, including Max/MSP (Cycling

’74 2001) and PureData (Puckette 2001). However, since RED is a programming language

environment, it more closely resembles systems such as SuperCollider (McCartney 1996)

and Nyquist (Dannenberg 1997).

While these other systems are more complete and mature, RED stands out for its

flexibility and extensibility. It contains a complete, modern programming language, not a

domain-specific subset. This means it can be easily be part of real-world applications. Also,



virtually every subsystem in RED is modular, including the signal processing schedulers,

and UGs. This makes it easy for these subsystems to be adapted or replaced for particular

needs.

RED, as a research system, is primarily concerned with creating a powerful and extensi-

ble infrastructure for signal processing. Therefore, this chapter discusses global architecture

issues and does not go into detail about specific unit generators or synthesis algorithms.

6.2 Architecture

6.2.1 Overview

To use RED, Python programs are written that build “patches” or signal-processing

graphs.1 (See Section 6.3 for examples of these programs.) Once created, the graphs are

executed (signals are processed) in realtime. For purposes of efficiency, these graphs are first

sorted into a processing list using a temporal sort (Cormen et al. 1997). The processing

list contains all of the UGs in the correct order needed to process the graph, as well as

the assignment of buffers to the inlets and outlets of the UGs. Processing the signal, then,

involves a straightforward traversal through the processing list, and does not require parsing

the graph to process each block. (This is very similar to the signal processing technique

used in PureData.) However, unlike PureData, RED can have multiple processing lists for

different kinds of signals (e.g. audio or video). A different processing list is created for each

kind of signal and these lists are assigned to signal-specific schedulers to process the data.

The processing of each kind of data occurs in a separate thread. The scheduler threads

can then communicate to one another through an efficient message-passing system (Section

6.2.5). This framework provides the basis for building complex, realtime, digital signal

processing graphs.

6.2.2 Goals

This overall architecture has the following important features:

• General. RED is not tied to particular types of digital signals, but instead can

process different types of data, including audio and video (Section 6.2.3).
1Here, the word “graph” is used not in the visual sense, but in the conceptual sense as in mathematical

graph theory.



• Modularized. Virtually every subsystem of RED is modularized. In addition, UGs

are easy to develop by C++ programmers (Section 6.2.4).

• Realtime, low-latency performance. RED is efficient, while still being flexible

at runtime, and the audio latency is as low as possible on the respective platforms

(Section 6.2.5).

• Built from existing tools. In an attempt to avoid re-inventing the wheel, RED is

built from a number of existing, mature, open source tools (Section 6.2.6).

• Portable. By using tools that are already cross-platform, and avoiding the use of

advanced language features, RED runs on a variety of platforms (Section 6.2.7).

6.2.3 General

RED is designed to handle multiple types of digital signals, including audio and video.

There is a simple restriction, however, that allows for this generality while keeping the im-

plementation simple and manageable: all signal processing is performed on buffers (arrays)

of floating-point values,2 and, in most cases, normalized to the range [−1, 1]. In the case

of audio, this is an array of samples, and in video it is a two-dimensional array of either

grey-scale pixel values or red-green-blue (RGB) triplets. Since all signals are processed as

floating-point arrays, the only difference between the signal buffers of different types is their

length. This means that the same UGs can be used to process different kinds of signals.

Authors of UGs can specify whether a UG is applicable only to a particular signal type

or to all types of signals. UGs that work on all signals can be written and compiled in only

one form and still process multiple types of signals. For example, a UG for addition can be

used to mix audio or video signals. Other UGs that are signal-specific, especially video UGs

that need a notion of (x, y) coordinates, may be declared to work only with particular types

of signals. The graph-sorting algorithm examines these declarations and the connections to

other UGs to determine which scheduler and which size of buffer to assign to each UG.

6.2.4 Modularized

RED has a highly modular design. Almost every subsystem, excepting the Python

language and the message-passing system, can be loaded and interchanged at runtime.

Here, the term “module” refers to Python “extension modules”: separately compiled code
2These floating-point values can be either 32-bit or 64-bit floats depending on the most efficient method

on the host processor.



objects that are loaded at runtime.3 Most UGs, except the most basic, are grouped into

modules, such that only the categories of UGs that are needed in a given application need

to be loaded at runtime. Schedulers, which direct the processing of data are also modular.

Writing new UGs is accomplished through extensions to the UG classes developed for

the Realtime Audio Template Library (RATL) (MacMillan et al. 2001; MacMillan 2002).

These classes allow the UG programmer to focus on the development of the core algorithm,

and expend less effort fitting it into the overall infrastructure of a DSP system. RATL’s

design also ensures efficiency by using advanced C++ features such as templates and in-

lining (Stroustrup 1997). As an example, the code for a very simple oscillator (Osc) UG is

presented below. The only functions that need to be written are:

• A constructor (Osc()) to initialize variables.

• A member function (method) so the user can set the frequency (freq).

• A special tick member function that processes a single sample. This function is

inlined into a function in the base class that processes an entire block of samples.

This block processing function can be overridden if it is advantageous to write the

algorithm for an entire block of samples.

Finally, a small amount of code is needed to create a Python extension module for this UG,

and wrap the UG itself and any new member functions it may have. Additional convenience

macros are available to provide more information to the infrastructure, such as overriding

the default names of the inlets and outlets or specifying which kind of signals the UG is

specialized for.

/*

* Oscillator class

*

* A simple implementation that uses the standard C library’s

* sin () function.

*

* Inherits from UgenProducer (a UG that produces a signal)

* The template argument <Osc> allows functions in this

* subclass to be inlined in functions in the base class.

*/

3Shared objects (.so) under UNIX, and dynamically loaded libraries (.dll) on Microsoft Windows.



class Osc : public UgenProducer<Osc> {

public:

// Declare that this UG works on audio signals

SIGNAL("audio");

// Constructor : chain to the base class and setup defaults

Osc () : UgenProducer () {

m_phase = 0;

freq (440);

}

// freq: set the frequency of the oscillator

// This is a new member function not in the base class

inline void freq(sample freq) {

m_freq = freq;

m_step = (freq * TWOPI) / m_sr;

// Send out a message that the frequency has changed

send_message (’freq ’, freq);

}

// tick: where each sample is processed

// This is called from a member in the base class that

// processes an entire buffer of samples.

inline sample tick(sample f, sample amp) {

m_phase += m_step;

if (m_phase > TWOPI)

m_phase -= TWOPI;

return sin(m_phase);

}

private:

sample m_phase , m_step;



sample m_freq;

};

/*

* WRAPPING CODE

*

* This code exposes the UG to Python

*/

// Create a new module

PLUGIN_INIT(osc, "osc")

// Add this ugen

ugen_builder<Osc> osc_obj(osc, "_Osc");

// Define any member functions not in the base class

osc_obj.def(&Osc::freq, "freq");

}

6.2.5 Realtime, low-latency performance

Being a dynamic scripting language, Python is not suited for realtime processing. How-

ever, by writing the realtime portions (UGs and schedulers) in C++, other parts of the

system that only need to be “adequately fast” (graph sorting, graph building) can be writ-

ten in Python and reap the benefits of its dynamic data structures, lack of compilation step

and automatic memory management.

Schedulers

The schedulers are separate threads that perform the actual signal processing. Since

the scheduler loop has no direct interaction with Python, it is not affected by Python’s

inefficiencies. A scheduler must be provided for each kind of signal. At present, schedulers

exist for audio, MIDI and video data, but more could be added as desired. The schedulers

each run in their own thread of execution, so that the processing within the thread can be

“driven” directly off of the input/output hardware. For instance, audio processing would

occur every time enough samples had been received from the audio input device (i.e. sound

card). It is possible to run two schedulers of the same type simultaneously (e.g. for two sound



cards on the same machine). Schedulers run autonomously, and the operating system is

ultimately in charge of managing their “parallel” execution. However, the real power comes

from being able to communicate between the different scheduler threads and between the

scheduler threads and Python.

Message passing

These communications are performed using a specialized message-passing system based

loosely on the Smalltalk programming language (Ingalls 1981). Messages are sent from unit

generators to other unit generators, usually when a particular event occurs, such as a MIDI

keypress. They consist of two parts: a message name and associated data. Messages can be

sent from a UG by calling its send_message member function. When a message is received

by a UG, a member function with the same name as the message name is called, with the

associated data as an argument. Therefore, new ways of receiving messages can be created

by simply adding new member functions to a UG. (For more details on how messages can

be connected, see Section 6.3.2.) Messages can be sent and received with equal flexibility

in both Python and C++. The dynamic function calling, when a message is received, is

made more efficient than a typical dynamic Python function call through a combination of

various caching techniques for polymorphic calls presented by Driesen (1999).

A message is sent by calling the send_message member function of a UG. This places

the message name and data in a queue data structure (first-in, first-out (FIFO)). Items in

the queue are cleared as often as possible by the central Python thread, which has a lower

priority than the realtime scheduler threads. This ensures that sending a message will not

interrupt a realtime thread. In practice, the latency of this approach is quite acceptable.4

6.2.6 Built from existing tools

RED is built from a number of existing, mature, and open-source tools that allowed it

to be rapidly developed into a more advanced system than the time and resource constraints

might have otherwise allowed. All of the tools are open source and compatible with the

GNU General Public License (Free Software Foundation 1991). Therefore, RED is also an

open-source project, and users are free to modify and extend the system. The existing tools

that make up the system are described below.
4Experiments show that floating-point messages can be passed through up to approximately 70 objects

in under 1ms on a PC running Linux 2.4 with a 500MHz Intel Celeron processor.



Core language: Python

At the core of the system is the object-oriented, interpreted language, Python (Van

Rossum and Drake 2000). It was chosen for its ease-of-use, portability (Section 6.2.7) and

extensibility (Section 6.2.6). Since Python has some of the common features of scripting

languages (Salus 1998), namely that it can be run interactively (where each line of code is

executed as it is typed), and running programs (scripts) requires no compilation, it is an

ideal language for experimentation and rapid development. Python also features automatic

memory management, both reference counting and garbage collection, and therefore users

do not need to concern themselves with the freeing of memory when objects are destroyed:

this is handled automatically by the language implementation. This automatic memory

management also made the development of RED as a whole considerably easier. In addition

to these language features, Python also includes a rich set of libraries, including tools for

graphical user interfaces (GUI), networking, and advanced input/output (I/O). Therefore,

it is easy to include the digital signal processing features of RED inside of a larger, full-

featured application.

Using Python as part of a DSP environment is not a new idea, though the approach

used in RED is. There are at least three other systems related to both Python and real-time

audio DSP: Boodler (Plotkin 2001), the Python bindings to RTCMix (Topper 2000; Gibson

2001), and Serpent (Dannenberg 2001).

Boodler Boodler, while providing only a very basic sample playback system, includes

some interesting ways to algorithmically build score and performance instructions in Python.

However, it is inflexible at the signal processing level, since the individual processes are not

modularized and exposed to Python.

RTCmix Recently, RTCmix added the ability to write scores in Python and Perl, in ad-

dition to the traditional Cmix language, minc. Unlike RED or Boodler, RTCmix itself runs

as an entirely separate process, not a Python module, and is therefore not strictly depen-

dent upon Python to function. RTCmix and RED work on different synthesis paradigms,

however. Whereas the basic unit in RED is the unit generator, RTCmix deals with the

higher-level concept of instruments.



Serpent Serpent is a new language design and implementation “inspired” by Python for

use in CMU’s Aura project for pervasive computing. Serpent is not strictly a synthesis

system: it is more focused on realtime message-passing. The primary advantages of Ser-

pent are described as real-time garbage collection, sub-millisecond message-passing and the

ability to have multiple virtual machines. Unfortunately, those advantages gained from

implementing a new language from scratch perhaps do not justify the considerable effort

involved. For the purposes of real-time DSP, advanced garbage collection is not strictly

necessary, as long as the garbage collection is “adequately fast” and does not interrupt

the real-time processing (Section 6.2.5). Sub-millisecond message-passing can be achieved,

even on modest hardware, using a specialized efficient message-passing module loaded into

the standard Python virtual machine. Lastly, the ability to have multiple virtual machines

comes for free with the standard Python implementation. The incremental improvements

in Serpent are interesting, but there are perhaps more advantages to building upon existing

standard tools.

Wrapping mechanism: Boost Python library

Boost is a collection of advanced low-level libraries for C++ (Abrahams et al. 2002a).

Within that collection, the Boost Python library (boost::python) (Abrahams et al. 2002b)

allows C++ libraries to be easily accessed from Python. This approach is considerably easier

than using the standard Python/C API normally used to interface C or C++ with Python.

This wrapping mechanism is what makes it possible for the core of the system to be written

in Python, while the realtime critical portions are written in much more efficient C++

(Section 6.2.5).

Access to audio and MIDI hardware: PortMusic

PortMusic is a collection of programming libraries for audio (PortAudio) and MIDI

(PortMIDI).

PortAudio (Burk et al. 2001) allows the programmer to develop applications with re-

altime full-duplex audio processing that run on multiple platforms. Programming with

PortAudio is also generally simpler than programming directly for the native audio inter-

faces of most operating systems. Furthermore, it usually offers the best latency performance

possible on all supported platforms (MacMillan et al. 2001b).



A related library still under development, PortMIDI, will provide cross-platform access

to MIDI devices.5

Access to video capture and display hardware: wxLIVID and SDL

At present, there are no complete cross-platform libraries for accessing video hardware.

However, wxLIVID (Surveyor 2001), currently under development, aims to provide easy

access to video capture hardware under Linux and Microsoft Windows.6

To display video output, the cross-platform Simple DirectMedia Layer (SDL) (Wen

2001) library is used. Designed primarily for game development, SDL provides, among

other things, a very fast method to display video.

6.2.7 Portable

Since all of the tools used in the making of RED are cross-platform, RED is also runs

on many common desktop platforms. Table 6.1 shows the different platforms supported by

these tools.

In addition to the use of cross-platform tools, a restricted subset of the C++ language

is used that is supported by the major compilers on these platforms.7

6.3 Usage examples

This section will give a brief overview of how an end user/programmer may use RED,

and gives some simple examples. A basic knowledge of Python is assumed. Since Python

can be run interactively, RED programs can be typed in one line at a time and the results

are heard immediately, or the entire script can be saved in a file to be run automatically.

6.3.1 Unit generator objects

As stated before, to use RED, one writes programs that build “patches” by connecting

unit generators (UGs) together. UG instances are created, as all object instances in Python,
5Currently, partial MIDI support for Linux and Microsoft Windows is provided with code borrowed from

Synthesis Toolkit (STK) (Cook 1999). It is hoped that some of this work can be contributed back to the
PortMIDI project.

6Currently, basic access to the Video4Linux API (Red Hat Labs 2001) has been implemented.
7GNU compiler collection (gcc) for UNIX and MacOS-X, Microsoft Visual C++ on Microsoft Windows,

and Metrowerks CodeWarrior on MacOS 8.x and 9.x



UNIX Microsoft Windows Apple MacOS
FreeBSD, Linux & Solaris 95, 98, ME, NT, 2000, XP 8.x, 9.x OS-X

Python • • • •
Boost Python •(a) •(b)(c) •(c) •(a)
PortAudio •(d) •(e)(f), ◦(g) •(h), ◦(g) ◦(i)
PortMIDI ◦(e) ◦
wxLIVID ◦(j) ◦(k)
SDL •(l) •(f) •(m) •(m)

• Completed and ready for widespread use
◦ Planned or in alpha stage of development

(a) GNU compiler collection (gcc)
(b) Microsoft Visual C++
(c) Metrowerks CodeWarrior
(d) Open Sound System (OSS)
(e) Windows Multimedia Extensions (MME)
(f) Microsoft DirectX
(g) Steinberg Audio Streaming Input and Output (ASIO)
(h) Apple SoundManager
(i) Apple CoreAudio API
(j) Video4Linux API
(k) Video for Windows VIDCAP API
(l) X-Windows with Direct Graphics Architecture (DGA) acceleration
(m) Apple Carbon and DrawSprockets APIs

Table 6.1: Compatibility matrix of the various third party tools used to build RED.



by calling the UG’s constructor and assigning the result to a variable. For instance, one

can create a new oscillator (Osc) object with a frequency of 440Hz by typing:

osc = Osc(freq = 440)

6.3.2 Connecting signals

However, creating a UG on its own will not allow it to be heard or seen. It must first be

“connected” to an audio or video output object. For each unit generator object, the signal

inlets and outlets are accessed by providing an inlet name inside square brackets ‘[]’. For

instance, to get the outlet of the oscillator object we can use the expression:

osc[’out’]

These inlets and outlets can be connected to the inlets and outlets of other objects using

the overloaded left-shift ‘<<’ and right-shift ‘>>’ operators. The connection is made in the

direction of the “arrows.” For example, to create an oscillator object, and then connect its

outlet to the a stereo digital audio convertor (DAC) output generator:

dac = Dac()

osc = Osc(freq = 440)

Connect the outlet of the osc to an inlet of the Dac

osc[’out’] >> dac[’left’]

Connect the output of the oscillator to the other channel

dac[’right’] << osc[’out’]

Multiple outlets can be connected to the same inlet, and the signals are implicitly mixed

(added together). For example, two oscillators can be sent to the same output:

dac = Dac()

osc1 = Osc(freq = 440)

osc2 = Osc(freq = 220)

osc1[’out’] >> dac[’left’]

Implicitly mixes signals

osc2[’out’] >> dac[’left’]

When objects are deleted, their connections are deleted as well, so it is perfectly valid, using

the above example, to later destroy one of the UGs, and it will no longer produce a signal:

del osc2



Since we have a full-featured programming language at our disposal, it is also easy to

create a large number of oscillators and connect them to the output. In this example, the

outlet of the oscillator can be connected to all inlets of the Dac object using the special

member inlets.

dac = Dac()

for i in range (50):

osc = Osc(freq = 100 * i)

Shorthand , equivalent to

osc[’out ’] >> dac[’left’]

osc[’out ’] >> dac[’right’]

osc[’out’] >> dac.inlets

As another simple signal-connecting example, we can create a ring modulation patch

by creating two oscillators and connecting them to a Multiply object. In this case, we’re

using the convenience feature that the oscillator outputs can be passed in to the constructor

of the Multiply object.

osc1 = Osc(freq = 440)

osc2 = Osc(freq = 100)

Create a new Multiply object , and connect its two inlets

to the outputs of osc and osc2

mult = Multiply(osc1[’out’], osc2[’out’])

dac = Dac(mult[’out’], mult[’out’])

Connecting messages

Messages are sent from unit generators to other unit generators, usually when a partic-

ular event occurs, such as a MIDI keypress. They consist of two parts: a message name and

associated data. Messages can be sent from an object by calling its send_message member

function. When a message is received by a unit generator, a member function with the same

name as the message name is called, with the associated data as an argument. Therefore,

new ways of receiving messages can be created by simply adding new member functions to

a unit generator.

Messages connections are accessed from the object by specifying a message name in

parentheses ‘()’ and connected, in the same way as signals, using the ‘<<’ and ‘>>’ oper-



ators. For example, to connect the x of the Mouse object (which reports the x position of

the mouse pointer) to the frequency of an oscillator:

mouse(’x’) >> osc(’freq’)

To connect all messages emitted by one unit generator to another, simply do not specify a

message name:

osc >> osc2

Often it is useful to modify the value of a message as it is passed to another unit

generator. For this reason, function adaptors are provided. The FA (function adaptor)

object constructor takes as its arguments a function, and one or more emitting messages.

For example, to scale the output of the mouse object to be in a more audible frequency

range:

def scale_freq(x):

return 500 + x * 0.9

osc(’freq’) << FA(scale_freq , mouse(’x’))

Of course, it is often more convenient to use Python’s lambda notation and avoid the

function definition altogether:

osc(’freq’) << FA(lambda x: 500 + x * 0.9, mouse(’x’))

Function adaptors can also be used to combine the results of two messages into one.

Say for example, frequency was to be a function of both mouse position and MIDI note:

osc(’freq’) << FA(lambda x, y: y + x * 0.01,

mouse(’x’),

midi_in(’freq’))

In this case, anytime either the mouse position or MIDI note changes, a message will be

sent to the oscillator that is a function of the two. This behavior can be changed, using the

only_on keyword argument, so that, for instance, a message is only sent when the mouse

moves, not when the MIDI note changes:

osc(’freq’) << FA(lambda x, y: y + x * 0.01,

mouse(’x’),

midi_in(’freq’),

only_on =0)



6.4 Conclusion

RED offers flexibility, extensibility and portability. It provides the foundation for both

experimentation with signal processing algorithms and the construction of large end-user

applications. Given the power of graphical user interface (GUI) programming in Python,

it should provide a useful basis for large GUI applications that contain signal processing,

such as a Max-like environment or video production tool. Future developments will add

more UGs to the system and further refine the performance of the core infrastructure. Due

to its modular nature, it should be easy for multiple geographically disperse developers to

improve it cooperatively.



References

Abrahams, D., D. Adler, B. Dawes, J. Maddock, and J. Maurer. 2002a. Boost libraries for
C++. Computer software. http://www.boost.org

Abrahams, D., U. Koethe, R. W. Grosse-Kunstleve, et al. 2002b. Boost Python library.
Computer software. http://www.boost.org/libs/python/

Burk, P., R. Bencina, D. Gibbs, D. Repetto, S. Letz, P. Suurmond et al. 2001. PortAudio:
Portable audio library. Computer software. www.portaudio.com

Cook, P. R. and G. Scavone. 1999. The synthesis toolkit (STK), version 2.1. In Proceedings
International Computer Music Conference.

Cormen, T., C. E. Leiserson, and R. L. Rivest. 1997. Introduction to Algorithms.
Cambridge, MA: MIT Press.

Cycling ’74. 2001. Max/MSP. Computer Software. http://www.cycling74.com

Dannenberg, R. 1997. The Implementation of Nyquist, a Sound Synthesis Language.
Computer Music Journal 21(3): 71–82.

Dannenberg, R. et al. 2001. An introduction to Serpent.
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/music/web/aura/serpent.htm

Driesen, K. 1999. Software and hardware techniques for efficient polymorphic calls. Ph. D.
diss., University of California, Santa Barbara.

Free Software Foundation. 1991. GNU General Public Licence.
http://www.gnu.org/licenses/gpl.html

Gibson, J. 2001. Python bindings for RTCmix. Computer Software.
http://www.music.columbia.edu/cmix/

Ingalls, D. H. H. 1981. Design principles behind Smalltalk. BYTE Magazine, August 1981.

MacMillan, K., M. Droettboom, and I. Fujinaga. 2001a. A system to port unit generators
between audio DSP systems. In International Computer Music Conference. In press.

MacMillan, K., M. Droettboom, and I. Fujinaga. 2001b. Audio latency measurements of
desktop operating systems. In International Computer Music Conference. In press.

MacMillan, K. 2002. Master’s Thesis. Peabody Institute of the Johns Hopkins University.



McCartney, J. 1996. SuperCollider: A new real-time sound synthesis language. In
International Computer Music Conference 257–8.

Plotkin, A. 2001. Boodler: a programmable soundscape tool. Computer software.
http://www.eblong.com/zarf/boodler/

Puckette, M. S. 2001. Pure Data. Computer software. http://www.pure-data.org

Red Hat Labs. 2001. Video4Linux API Version 2.2. Computer software.
http://roadrunner.swansea.linux.org.uk/v4l.shtml

Roads, C. 1999. The computer music tutorial. Cambridge, MA: MIT Press.

Van Rossum, G., and F. L. Drake. 2000. Python tutorial. Campbell, CA: iUniverse.

Salus, P. H., ed. 1998. Handbook of programming languages, Volume III: Little languages
and tools. Indianapolis: MacMillan Technical Publications.

Surveyor Corporation. 2001. wxLIVID: A multi-platform, open-source approach to video
capture, processing and display. Computer software.
http://www.surveyorcorp.com/wxLivid/

Stroustrup, B. 1997. The C++ programming language. 3rd ed. Reading, MA:
Addison-Wesley.

Topper, D. 2000. RTCmix for Linux: Part 1. Linux Journal 178.

Wen, H. 2001. SDL: The DirectX alternative. O’Reilly Network. 09/21/2001.



Acknowledgements

I wish to acknowledge the assistance of Dr. Ichiro Fujinaga at the Peabody Institute of the

Johns Hopkins University.

The work in optical music recognition was conducted as part of the Lester S. Levy Col-

lection of Sheet Music Digitization Project of the Special Collections and Digital Knowledge

Center branches of the Milton S. Eisenhower Library at Johns Hopkins University. Funding

was provided in part by the National Science Foundation, the Institute for Museum and Li-

brary Services, the International Symposium on Music Information Retrieval and the Levy

family.

I wish to thank G. Sayeed Choudhury, Tim DiLauro, Holger H. Hoos, Karl MacMillan,

Mark Patton, Kai Renz and James Warner for their assistance with this research.

Vita

Michael Droettboom received an Honours Bachelor of Arts degree in Computer Science,

with a minor in Music, from York University in 2000. He is currently employed by the

Digital Knowledge Center of the Milton S. Eisenhower Library developing software for the

automatic recognition of cultural heritage documents, including sheet music. He is also an

award-winning classical vocalist and composer.

